Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Covalent binding of polycyclic aromatic compounds to mitochondrial and nuclear DNA

Abstract

Since the pioneering work of the Millers1 it has become clear that most chemical carcinogens require metabolism to reactive electrophiles and then exhibit their carcinogenic potential by reacting chemically with, and modifying, cellular macromolecules. At first modification of proteins was considered most likely to be of importance in carcinogenesis. Later, Brookes and Lawley2 demonstrated that the extent of binding of several polycyclic hydrocarbons to DNA, but not to RNA or protein isolated from the skin of mice treated topically with these compounds, correlated with their known carcinogenic potency to this tissue. Mammalian cells, particularly mouse embryo cells, treated with chemical carcinogens have often been used, and DNA has been involved almost exclusively from whole cells. However, mitochondria possess unique DNA which accounts for 0.1–1% of the total DNA present in mammalian cells3, and three studies have shown that carcinogenic alkylating agents modify the mitochondrial DNA by a factor about five times greater than the nuclear DNA from the same cells4–6. We demonstrate here that with six polycyclic aromatic compounds, all of which require metabolic activation and bind to DNA to a much smaller extent than direct-acting alkylating agents, the binding to mitochondrial relative to DNA is dramatically increased by a factor of nearly 50 to over 500.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, E. C. & Miller, J. A. Cancer Res. 7, 468–480 (1947).

    CAS  Google Scholar 

  2. Brookes, P. & Lawley, P. D. Nature 202, 781–784 (1964).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Nass, S. Int. Rev. Cytol. 25, 55–129 (1969).

    Article  CAS  PubMed  Google Scholar 

  4. Wunderlich, V., Schütt, M., Bottger, M. & Graffi, A. Biochem. J. 118, 99–109 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wunderlich, V., Tetzlaff, I. & Graffi, A. Chem.-Biol. Interactions 4, 81–89 (1971).

    Article  Google Scholar 

  6. Wilkinson, R., Hawkes, A. & Pegg, A. E. Chem.-Biol. Interactions 10, 157–167 (1975).

    Article  CAS  Google Scholar 

  7. Prescott, D. M., Tao, M. V. N., Evenson, D. P., Stone, G. E. & Thrasher, J. D. in Methods in Cell Physiology Vol. 2 (ed. Prescott, D. M.) 131–142 (Academic, New York, 1966).

    Google Scholar 

  8. Miyaki, M., Yatagai, K. & Ono, T. Chem.-Biol. Interactions 17, 321–329 (1977).

    Article  CAS  Google Scholar 

  9. Diamond, L., Defendi, V. & Brookes, P. Cancer Res. 27, 890–897 (1967).

    CAS  PubMed  Google Scholar 

  10. Hirt, B. J. molec. Biol. 26, 365–369 (1967).

    Article  CAS  PubMed  Google Scholar 

  11. King, E. J. & Wotton, I. D. P. Micro-analysis in Medical Biochemistry 3rd edn, 76 (Churchill, London, 1956).

    Google Scholar 

  12. Hill, B. T. & Whatley, S. FEBS Lett. 56, 20–23 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. Phillips, D. H., Grover, P. L. & Sims, P. Int. J. Cancer 22, 487–494 (1978).

    Article  CAS  PubMed  Google Scholar 

  14. Sato, R., Atsuta, Y., Imai, Y., Taniguchi, S. & Okuda, K. Proc. natn. Acad. Sci. U.S.A. 74, 5477–5481 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Raw, I. Biophys. biochem. Res. Commun. 81, 1294–1297 (1978).

    Article  CAS  Google Scholar 

  16. Graffi, A. Z. Krebsforsch. 49, 477–495 (1940).

    Article  Google Scholar 

  17. Coombs, M. M., Bhatt, T. S. & Young, S. Br. J. Cancer 40, 914–921 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coombs, M. M. & Croft, C. J. Prog. exp. Tumor Res. 11, 69–85 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. Sims, P., Grover, P. L., Swasiland, A., Pal, K. & Hewer, A. Nature 254, 326–328 (1974).

    Article  ADS  Google Scholar 

  20. Coombs, M. M., Kissonerghis, A.-M., Allen, J. A. & Vose, C. W. Cancer Res. 39, 4160–4165 (1979).

    CAS  PubMed  Google Scholar 

  21. Borst, P. & Grivell, L. A. Cell 15, 705–723 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Warburg, O. Science 123, 309–314 (1956).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Egilsson, V., Evans, I. H. & Wilkie, D. Molec. gen. Genet. 174, 39–46 (1979).

    Article  CAS  PubMed  Google Scholar 

  24. Coombs, M. M. J. labelled Comp. Radiopharm. 16, 147–151 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, J., Coombs, M. Covalent binding of polycyclic aromatic compounds to mitochondrial and nuclear DNA. Nature 287, 244–245 (1980). https://doi.org/10.1038/287244a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287244a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing