Letter | Published:

Supraoptic neurones of rat hypothalamus are osmosensitive

Subjects

Abstract

It has been found that cells in the region of the supraoptic nucleus (SON) of the hypothalamus are sensitive to osmotic stimuli in a physiological range, and have studied the mechanism by which the osmotic sensitivity arises. An in vitro hypothalamic brain slice preparation has been used to make intracellular recordings from the SON. Cells lying in the SON respond to small increases (9–40 mosmoll–1) in the osmolarity of their external environment with a marked increase in firing rate. They respond to NaCl and mannitol although not to glucose. The osmotic sensitivity of SON neurones has a complex origin at both a pre- and a postsynaptic level, being composed first of depolarization of the primary SON neurone by an increase of extracellular osmolarity and second by an increased rate of occurrence of excitatory synaptic events which markedly augment firing rate. These results are consistent with Jewell and Verney's suggestion1,2 that osmoreception in the mammalian brain occurs in the region of the anterior hypothalamus, and extends this localization by indicating that the SON neurones are themselves both directly osmosensitive and part of an osmoreceptive complex.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Verney, E. B. Proc. R. Soc. B135, 25–106 (1947).

  2. 2

    Jewell, P. A. & Verney, E. B. Phil. Trans. R. Soc. B240, 197–324 (1957).

  3. 3

    Sladek, C. D. & Knigge, K. M. Endocrinology 101, 1834–1838 (1977).

  4. 4

    Schrier, R. W., Berl, T. & Anderson, R. J. Am. J. Physiol. 236, 321–332 (1979).

  5. 5

    Robertson, G. L., Shelton, R. L. & Athar, S. Kidney Int. 10, 25–37 (1976).

  6. 6

    Leng, G. J. Physiol., Lond. 304, 405–414 (1980).

  7. 7

    McKinley, M. J., Denton, D. A. & Weisinger, R. S. Brain Res. 141, 89–103 (1978).

  8. 8

    Brimble, M. J. & Dyball, R. E. J. J. Physiol., Lond. 271, 253–271 (1977).

  9. 9

    Brimble, M. J., Dyball, R. E. J. & Forsling, M. L. J. Physiol., Lond. 278, 69–78 (1978).

  10. 10

    Hatton, G. I., Armstrong, W. B. & Gregory, W. A. Brain Res. Bull. 3, 497–503 (1978).

  11. 11

    Brimble, M. J., Haller, E. W. & Wakerley, J. B. J. Physiol., Lond. 278, 38–39P (1978).

  12. 12

    Haller, E. W., Brimble, M. J. & Wakerley, J. B. Expl Brain Res. 33, 131–134 (1978).

  13. 13

    Mason, W. T. J. Physiol., Lond. 303, 56P–57P (1980).

  14. 14

    Yamamoto, C. & McIlwain, H. C. J. Neurochem. 13, 1333–1343 (1966).

  15. 15

    Poulain, D. A., Wakerley, J. B. & Dyball, R. E. J. Proc. R. Soc. B196, 367–384 (1977).

  16. 16

    Hubbard, J. I., Jones, S. F. & Landau, E. M. J. Physiol., Lond. 197, 639–657 (1968).

  17. 17

    Fatt, P. & Katz, B. C. J. Physiol., Lond. 117, 109–128 (1952).

  18. 18

    Blioch, Z. L., Glagoleva, I. M., Liberman, E. A. & Neuashev, V. A. J. Physiol., Lond. 199, 11–35 (1968).

  19. 19

    Boyd, I. A. & Martin, A. R. J. Physiol., Lond. 132, 61–73 (1956).

  20. 20

    Furshpan, E. J. J. Physiol., Lond. 134, 689–697 (1956).

  21. 21

    Shimani, Y., Alnaes, E. & Rahaminoff, R. Nature 267, 170–172 (1977).

  22. 22

    Léránth, C., Záborsky, L., Marton, J. & Palkovits, M. Expl Brain Res. 22, 509–523 (1975).

Download references

Author information

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.