Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neurotransmitter turnover in rat striatum is correlated with morphine self-administration

Abstract

Drugs of abuse probably exert their reinforcing effects through ‘reward’ pathways in the central nervous system (CNS)1,2. Neuronal systems mediating opiate reinforcement have been investigated using pharmacological and electrolytic lesion procedures. Drugs that interfere with catecholaminergic3–6 and cholinergic7 neuronal activity decrease intravenous (i.v.) morphine self-administration in monkeys and rats. Electrolytic lesion procedures in rats have demonstrated that the medial forebrain bundle8 and caudate nucleus9 are important in maintaining i.v. morphine self-administration. We have now carried out a direct investigation of striatal (caudate nucleus, putamen and globus pallidus) neuronal systems. We show here that striatal catecholaminergic systems are important in mediating opiate reinforcement, and present direct evidence for the involvement of neurotransmitter systems in morphine reward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stein, L. Fedn Proc. 23, 836–850 (1964).

    CAS  Google Scholar 

  2. Marcus, R. & Kornetsky, C. Psychopharmacology 38, 1–13 (1974).

    Article  CAS  Google Scholar 

  3. Pozuelo, J. & Kerr, F. W. L. Mayo Clin. Proc. 47, 621–628 (1972).

    CAS  PubMed  Google Scholar 

  4. Hanson, H. M. & Cimini-Venema, C. A. Fedn Proc. 31, 503 (1972).

    Google Scholar 

  5. Smith, S. G. & Davis, W. M. Psych. Res. 23, 215–221 (1973).

    Google Scholar 

  6. Glick, S. D. & Cox, R. D. Res. Commun chem. Path. Pharmac. 12, 17–24 (1975).

    CAS  Google Scholar 

  7. Davis, W. M. & Smith, S. G. Life Sci. 16, 237–246 (1975).

    Article  CAS  Google Scholar 

  8. Glick, S. D. & Charap, A. D. Psychopharmacology, 30, 343–348 (1978).

    Article  Google Scholar 

  9. Glick, S. D., Cox, R. D. & Crane, A. M. Psychopharmacology 41, 219–224 (1975).

    Article  CAS  Google Scholar 

  10. Weeks, J. R. Science 138, 143–144 (1962).

    Article  ADS  CAS  Google Scholar 

  11. Pickens, R. & Dougherty, J. Rep. Res. Labs Dep. Psychiat., Univ. Minn, PR-72-1 (1972).

  12. Lane, J. D., Co, C. & Smith, J. E. Life Sci. 21, 1101–1108 (1977).

    Article  CAS  Google Scholar 

  13. Smith, J. E., Co, C., Mote, T. R. & Lane, J. D. Trans. Am. Soc. Neurochem. 10, 118 (1979).

    Google Scholar 

  14. Freeman, M. E., Co, C., Lane, J. D. & Smith, J. E. Analyt. Biochem. (in the press).

  15. Johnson, J. C., Ratner, M., Gold, G. J. & Clouet, D. H. Res. Commun. chem. Path. Pharmac. 9, 41–53 (1974).

    CAS  Google Scholar 

  16. Bhargava, H. N. & Matwyshyn, G. A. Eur. J. Pharmac. 44, 25–33 (1977).

    Article  CAS  Google Scholar 

  17. Iwamoto, E. T. & Way, E. L. Adv. Biochem. Psychopharmac. 20, 357–407 (1979).

    CAS  Google Scholar 

  18. Brase, D. A. Adv. Biochem. Psychopharmac. 20, 409–428 (1979).

    CAS  Google Scholar 

  19. Bläsig, J. Mod. Pharmac. Tox. 14, 279–356 (1978).

    Google Scholar 

  20. Maroli, A. N., Tsang, W-K. & Stutz, R. M. Pharmac. Biochem. Behav. 8, 119–123 (1978).

    Article  CAS  Google Scholar 

  21. Belluzzi, J. D. & Stein, L. Nature 266, 556–558 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Atweh, S. F. & Kuhar, M. J. Brain Res. 134, 393–405 (1977).

    Article  CAS  Google Scholar 

  23. Wise, R. A. Brain Res. 152, 215–247 (1978).

    Article  CAS  Google Scholar 

  24. Krnjevic, K. Physiol. Rev. 54, 418–540 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J., Co, C., Freeman, M. et al. Neurotransmitter turnover in rat striatum is correlated with morphine self-administration. Nature 287, 152–154 (1980). https://doi.org/10.1038/287152a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287152a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing