Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Circadian rhythmicity participates in the photoperiodic determination of diapause in spider mites

Abstract

The role of circadian rhythmicity in photoperiodic processes in plants and animals is still poorly understood. Involvement of circadian rhythmicity in photoperiodism has been demonstrated for a number of plants1,2, two mammals3,4, a number of birds5,6, and some species of insects7–11. Three theoretical alternatives have been suggested with regard to the form this involvement may take, with emphasis on the possibility that the circadian system is concerned with photoperiodic time measurement12–14. Most of the evidence for the involvement of the circadian system in both plant and animal photoperiodism comes from experiments with nondiel photoperiods—light/dark cycles with period lengths other than 24 h. The experimental design which has been used most frequently is the so-called resonance technique, in which the light component of a light/dark cycle is held constant and the dark component is varied over a wide range in successive experiments, to provide cycles with period lengths up to 72 h or more. Rhythmic variations in the photoperiodic response with peaks about 24 h apart are evidence for the involvement of circadian rhythmicity in the photoperiodic process studied. However, in some plants1, a reptile15, and a number of insect species16–20, the resonance technique failed to demonstrate any influence of circadian rhythmicity on photoperiodism. Using the same technique we have now found a rhythmic response in the incidence of diapause in the common spider mite, Tetranychus urticae, thus showing that in mites also, circadian rhythmicity is involved in the photoperiodic reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vince-Prue, D. Photoperiodism in Plants (McGraw-Hill, London, 1975).

    Google Scholar 

  2. Bollig, I., Chandrashekaran, M. K., Engelman, W. & Johnsson, A. Int. J. Chronobiol. 4, 83–96 (1976).

    Google Scholar 

  3. Elliott, J. A., Stetson, M. H. & Menaker, M. Science 178, 771–773 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Grocock, C. A. & Clarke, J. R. J. Reprod. Fert. 39, 337–347 (1974).

    Article  CAS  Google Scholar 

  5. Gwinner, E. in Avian Biology (eds Farmer, D. S. & King, J. R.) 221–285 (Academic, New York, 1975).

    Book  Google Scholar 

  6. Gwinner, E. & Eriksson, L.-O. J. Orn., Lpz. 118, 60–67 (1977).

    Article  Google Scholar 

  7. Saunders, D. S. J. Insect Physiol. 19, 1941–1954 (1973).

    Article  CAS  Google Scholar 

  8. Saunders, D. S. J. Insect Physiol. 20, 77–88 (1974).

    Article  Google Scholar 

  9. Beach, R. F. & Craig, G. B. Jr J. Insect Physiol. 23, 865–870 (1977).

    Article  CAS  Google Scholar 

  10. Dumortier, B. & Brunnarius, J. C. r. hebd. Séanc. Acad. Sci., Paris 285, 361–364 (1977).

    Google Scholar 

  11. Thiele, H. U. Oecologia 30, 331–348 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Bünning, E. Ber. dt. bot. Ges. 54, 590–607 (1936).

    Google Scholar 

  13. Pittendrigh, C. S. Proc. natn. Acad. Sci. U.S.A. 69, 2734–2737 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Pittendrigh, C. S. in The Neurosciences Third Study Program (eds Schmitt, F. O. & Worden, F. G.) 437–458 (MIT, Massachusetts, 1974).

    Google Scholar 

  15. Underwood, H. J. comp. Physiol. 125, 143–150 (1978).

    Article  Google Scholar 

  16. Peterson, D. M. & Hamner, W. M. J. Insect Physiol. 14, 519–528 (1968).

    Article  Google Scholar 

  17. Pittendrigh, C. S. & Minis, D. M. in Biochronometry (ed. Menaker, M.) 212–250 (National Academy of Sciences, Washington, 1971).

    Google Scholar 

  18. Lees, A. D. J. Insect Physiol. 19, 2279–2316 (1973).

    Article  Google Scholar 

  19. Skopik, S. D. & Bowen, M. F. J. comp. Physiol. 111, 249–259 (1976).

    Article  Google Scholar 

  20. Bonnemaison, L. Z. ang. Ent. 86, 178–204 (1978).

    Article  Google Scholar 

  21. Veerman, A. J. Insect Physiol. 23, 703–711 (1977).

    Article  Google Scholar 

  22. Saunders, D. S. Insect Clocks (Pergamon, Oxford, 1976).

    Google Scholar 

  23. Bünning, E. Die physiologische Uhr (Springer, Berlin, 1977).

    Book  Google Scholar 

  24. Vaz Nunes, M. & Veerman, A. J. comp. Physiol. 134, 203–217 (1979).

    Article  Google Scholar 

  25. Vaz Nunes, M. & Veerman, A. J. comp. Physiol. 134, 219–226 (1979).

    Article  Google Scholar 

  26. Lees, A. D. Ann. appl. Biol. 40, 449–486 (1953).

    Article  Google Scholar 

  27. Lees, A. D. Ann. appl. Biol. 40, 487–497 (1953).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veerman, A., Nunes, M. Circadian rhythmicity participates in the photoperiodic determination of diapause in spider mites. Nature 287, 140–141 (1980). https://doi.org/10.1038/287140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287140a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing