Letter | Published:

Circadian rhythmicity participates in the photoperiodic determination of diapause in spider mites

Abstract

The role of circadian rhythmicity in photoperiodic processes in plants and animals is still poorly understood. Involvement of circadian rhythmicity in photoperiodism has been demonstrated for a number of plants1,2, two mammals3,4, a number of birds5,6, and some species of insects7–11. Three theoretical alternatives have been suggested with regard to the form this involvement may take, with emphasis on the possibility that the circadian system is concerned with photoperiodic time measurement12–14. Most of the evidence for the involvement of the circadian system in both plant and animal photoperiodism comes from experiments with nondiel photoperiods—light/dark cycles with period lengths other than 24 h. The experimental design which has been used most frequently is the so-called resonance technique, in which the light component of a light/dark cycle is held constant and the dark component is varied over a wide range in successive experiments, to provide cycles with period lengths up to 72 h or more. Rhythmic variations in the photoperiodic response with peaks about 24 h apart are evidence for the involvement of circadian rhythmicity in the photoperiodic process studied. However, in some plants1, a reptile15, and a number of insect species16–20, the resonance technique failed to demonstrate any influence of circadian rhythmicity on photoperiodism. Using the same technique we have now found a rhythmic response in the incidence of diapause in the common spider mite, Tetranychus urticae, thus showing that in mites also, circadian rhythmicity is involved in the photoperiodic reaction.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Vince-Prue, D. Photoperiodism in Plants (McGraw-Hill, London, 1975).

  2. 2

    Bollig, I., Chandrashekaran, M. K., Engelman, W. & Johnsson, A. Int. J. Chronobiol. 4, 83–96 (1976).

  3. 3

    Elliott, J. A., Stetson, M. H. & Menaker, M. Science 178, 771–773 (1972).

  4. 4

    Grocock, C. A. & Clarke, J. R. J. Reprod. Fert. 39, 337–347 (1974).

  5. 5

    Gwinner, E. in Avian Biology (eds Farmer, D. S. & King, J. R.) 221–285 (Academic, New York, 1975).

  6. 6

    Gwinner, E. & Eriksson, L.-O. J. Orn., Lpz. 118, 60–67 (1977).

  7. 7

    Saunders, D. S. J. Insect Physiol. 19, 1941–1954 (1973).

  8. 8

    Saunders, D. S. J. Insect Physiol. 20, 77–88 (1974).

  9. 9

    Beach, R. F. & Craig, G. B. Jr J. Insect Physiol. 23, 865–870 (1977).

  10. 10

    Dumortier, B. & Brunnarius, J. C. r. hebd. Séanc. Acad. Sci., Paris 285, 361–364 (1977).

  11. 11

    Thiele, H. U. Oecologia 30, 331–348 (1977).

  12. 12

    Bünning, E. Ber. dt. bot. Ges. 54, 590–607 (1936).

  13. 13

    Pittendrigh, C. S. Proc. natn. Acad. Sci. U.S.A. 69, 2734–2737 (1972).

  14. 14

    Pittendrigh, C. S. in The Neurosciences Third Study Program (eds Schmitt, F. O. & Worden, F. G.) 437–458 (MIT, Massachusetts, 1974).

  15. 15

    Underwood, H. J. comp. Physiol. 125, 143–150 (1978).

  16. 16

    Peterson, D. M. & Hamner, W. M. J. Insect Physiol. 14, 519–528 (1968).

  17. 17

    Pittendrigh, C. S. & Minis, D. M. in Biochronometry (ed. Menaker, M.) 212–250 (National Academy of Sciences, Washington, 1971).

  18. 18

    Lees, A. D. J. Insect Physiol. 19, 2279–2316 (1973).

  19. 19

    Skopik, S. D. & Bowen, M. F. J. comp. Physiol. 111, 249–259 (1976).

  20. 20

    Bonnemaison, L. Z. ang. Ent. 86, 178–204 (1978).

  21. 21

    Veerman, A. J. Insect Physiol. 23, 703–711 (1977).

  22. 22

    Saunders, D. S. Insect Clocks (Pergamon, Oxford, 1976).

  23. 23

    Bünning, E. Die physiologische Uhr (Springer, Berlin, 1977).

  24. 24

    Vaz Nunes, M. & Veerman, A. J. comp. Physiol. 134, 203–217 (1979).

  25. 25

    Vaz Nunes, M. & Veerman, A. J. comp. Physiol. 134, 219–226 (1979).

  26. 26

    Lees, A. D. Ann. appl. Biol. 40, 449–486 (1953).

  27. 27

    Lees, A. D. Ann. appl. Biol. 40, 487–497 (1953).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.