Letter | Published:

Sequencing of 16S–23S spacer in a ribosomal RNA operon of Euglena gracilis chloroplast DNA reveals two tRNA genes

Nature volume 286, pages 908910 (28 August 1980) | Download Citation

Subjects

Abstract

Chloroplasts of the unicellular flagellate eukaryote Euglena gracilis contain several copies of a circular 135–140-kilobase pair DNA1 which codes for chloroplast-specific stable RNAs (16S, 23S (refs 2, 3), 5S rRNAs4 and tRNAs5) and for an unknown number of chloroplast-specific proteins. The rRNA genes are located within three tandemly repeated DNA regions of approximately 5.6 kilobase pairs each6–8 and the arrangement of the structural genes within each repeat follows the prokaryotic pattern, being 5′-16S-23S-5S-3′ (ref. 9). Total chloroplast tRNA hybridizes to fragments of rDNA9 and it was suggested that the 16S–23S spacer region contains tRNA coding sequences as is observed in Escherichia coli10,11 and in spinach chloroplast12 rDNA. We have therefore analysed E. gracilis strain Z 16S–23S spacer DNA at the nucleotide level, hoping this would allow identification of tRNA genes together with the processing sites of the respective primary transcripts. Maize chloroplast 16S rDNA shows strong sequence homology with E. coli 16S rRNA13. Sequence analysis of a total spacer in E. gracilis should demonstrate whether such similarities are also preserved in the chloroplast rDNA spacer region, or if this region has suffered a higher genetic drift rate. The latter is suggested from the 189 bases which have been sequenced from the 2.4-kilobase pair rDNA spacer from maize chloroplasts14. Flanking sequences, coding for the 3′-terminal region of 16S rRNA and for the 5′-terminal region of 23S rRNA have also been sequenced, to compare the drift rates between the spacer and its adjacent structural genes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Biochim. biophys. Acta 259, 285–296 (1972).

  2. 2.

    J. molec. Biol. 81, 327–336 (1973).

  3. 3.

    , & Eur. J. Biochem. 72, 525–535 (1977).

  4. 4.

    & Biochemistry 18, 1820–1825 (1979).

  5. 5.

    , & Proc. natn. Acad. Sci. U.S.A. 73, 1984–1988 (1976).

  6. 6.

    & Biochemistry 17, 284–290 (1978).

  7. 7.

    , , , & Gene 3, 191–209 (1978).

  8. 8.

    & Eur. J. Biochem. 88, 127–134 (1978).

  9. 9.

    , , , & Chloroplast Development (eds Akoyunoglou, G. et al.) 619–622 (Elsevier, Amsterdam, 1978).

  10. 10.

    , & J. biol. Chem. 254, 3624–3271 (1979).

  11. 11.

    & Nucleic Acids Res. 6, 575–592 (1979).

  12. 12.

    et al. FEBS Lett. 103, 52–56 (1979).

  13. 13.

    & Nature 283, 739–742 (1980).

  14. 14.

    & Nature 279, 520–522 (1979).

  15. 15.

    & Molec. gen. Genet. 163, 1–6 (1978).

  16. 16.

    , , & Experientia 86, 34 (1980).

  17. 17.

    , , & Proc. natn. Acad. Sci. U.S.A. 75, 4801–4805 (1979).

  18. 18.

    , , & FEBS Lett. 94, 152–156 (1978).

  19. 19.

    & FEBS Lett. 102, 95–99 (1979).

  20. 20.

    & Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

  21. 21.

    , , & Proc. natn. Acad. Sci. U.S.A. 72, 2418–2422 (1975).

  22. 22.

    et al. Nature 254, 83–86 (1975).

  23. 23.

    & Proc. natn. Acad. Sci. U.S.A. 71, 1342–1346 (1974).

  24. 24.

    Biological Regulation and Control (ed. Goldberger, R.) 349–399 (Plenum, New York, 1979).

  25. 25.

    , & Acides Nucléiques et Synthèse des Protéines chez les Végétaux (eds Bogorad, L. & Weil, J. H.) 419–423 (CNRS, Paris, 1977).

  26. 26.

    , & Acides Nucléiques et Synthèse des Protéines chez les Végétaux (eds Bogorad, L. & Weil, J. H.) 213–218 (CNRS, Paris, 1977).

  27. 27.

    & Cell 15, 661–670 (1978).

  28. 28.

    & Plant Sci. Lett. 16, 203–210 (1979).

  29. 29.

    , , & Nucleic Acids Res. 8, r1–r22 (1980).

  30. 30.

    A. Rev. Biochem. 48, 1035–1069 (1979).

  31. 31.

    et al. Nature 248, 20–24 (1974).

  32. 32.

    et al. Nature 250, 546–551 (1974).

Download references

Author information

Affiliations

  1. Laboratoire de Biochimie, Université de Neuchâtel, Chantemerle 20, CH-2000 Neuchâtel, Switzerland

    • L. Graf
    • , H. Kössel
    •  & E. Stutz
  2. Institut f¨r Biologie III der Universität Freiburg, Schänzlestrasse 1, D-7800 Freiburg i. Br, FRG

    • H. Kössel

Authors

  1. Search for L. Graf in:

  2. Search for H. Kössel in:

  3. Search for E. Stutz in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/286908a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.