Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequencing of 16S–23S spacer in a ribosomal RNA operon of Euglena gracilis chloroplast DNA reveals two tRNA genes

Abstract

Chloroplasts of the unicellular flagellate eukaryote Euglena gracilis contain several copies of a circular 135–140-kilobase pair DNA1 which codes for chloroplast-specific stable RNAs (16S, 23S (refs 2, 3), 5S rRNAs4 and tRNAs5) and for an unknown number of chloroplast-specific proteins. The rRNA genes are located within three tandemly repeated DNA regions of approximately 5.6 kilobase pairs each6–8 and the arrangement of the structural genes within each repeat follows the prokaryotic pattern, being 5′-16S-23S-5S-3′ (ref. 9). Total chloroplast tRNA hybridizes to fragments of rDNA9 and it was suggested that the 16S–23S spacer region contains tRNA coding sequences as is observed in Escherichia coli10,11 and in spinach chloroplast12 rDNA. We have therefore analysed E. gracilis strain Z 16S–23S spacer DNA at the nucleotide level, hoping this would allow identification of tRNA genes together with the processing sites of the respective primary transcripts. Maize chloroplast 16S rDNA shows strong sequence homology with E. coli 16S rRNA13. Sequence analysis of a total spacer in E. gracilis should demonstrate whether such similarities are also preserved in the chloroplast rDNA spacer region, or if this region has suffered a higher genetic drift rate. The latter is suggested from the 189 bases which have been sequenced from the 2.4-kilobase pair rDNA spacer from maize chloroplasts14. Flanking sequences, coding for the 3′-terminal region of 16S rRNA and for the 5′-terminal region of 23S rRNA have also been sequenced, to compare the drift rates between the spacer and its adjacent structural genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Manning, J. E. & Richards, O. C. Biochim. biophys. Acta 259, 285–296 (1972).

    Article  CAS  Google Scholar 

  2. Scott, N. S. J. molec. Biol. 81, 327–336 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Kopecka, H., Crouse, J. E. & Stutz, E. Eur. J. Biochem. 72, 525–535 (1977).

    Article  CAS  Google Scholar 

  4. Gray, P. W. & Hallick, R. B. Biochemistry 18, 1820–1825 (1979).

    Article  CAS  Google Scholar 

  5. Schwartzbach, S. D., Hecker, L. I. & Barnett, W. E. Proc. natn. Acad. Sci. U.S.A. 73, 1984–1988 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Gray, P. W. & Hallick, R. B. Biochemistry 17, 284–290 (1978).

    Article  CAS  Google Scholar 

  7. Rawson, J. R. Y., Kushner, S. R., Vapnek, D., Alton, N. K. & Boerma, C. L. Gene 3, 191–209 (1978).

    Article  CAS  Google Scholar 

  8. Jenni, B. & Stutz, E. Eur. J. Biochem. 88, 127–134 (1978).

    Article  CAS  Google Scholar 

  9. Hallick, R. B., Gray, P. W., Chelm, B. K., Rushlow, K. E. & Orozco, E. M. Jr Chloroplast Development (eds Akoyunoglou, G. et al.) 619–622 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  10. Young, R. A., Maklis, R. & Steitz, J. A. J. biol. Chem. 254, 3624–3271 (1979).

  11. Sekya, T. & Nishimura, S. Nucleic Acids Res. 6, 575–592 (1979).

    Article  Google Scholar 

  12. Bohnert, H. J. et al. FEBS Lett. 103, 52–56 (1979).

    Article  CAS  Google Scholar 

  13. Schwarz, Z. & Kössel, H. Nature 283, 739–742 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Schwarz, Z. & Kössel, H. Nature 279, 520–522 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Knopf, U. C. & Stutz, E. Molec. gen. Genet. 163, 1–6 (1978).

    Article  CAS  Google Scholar 

  16. Graf, L., Schwarz, Z., Kössel, H. & Stutz, E. Experientia 86, 34 (1980).

    Google Scholar 

  17. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F. Proc. natn. Acad. Sci. U.S.A. 75, 4801–4805 (1979).

    Article  ADS  Google Scholar 

  18. Carbon, P., Ehresmann, C., Ehresmann, B. & Ebel, J. P. FEBS Lett. 94, 152–156 (1978).

    Article  CAS  Google Scholar 

  19. Jenni, B. & Stutz, E. FEBS Lett. 102, 95–99 (1979).

    Article  CAS  Google Scholar 

  20. Maxam, A. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Zablen, L. B., Kissil, M. S., Woese, C. R. & Buetow, D. E. Proc. natn. Acad. Sci. U.S.A. 72, 2418–2422 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Woese, C. R. et al. Nature 254, 83–86 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Shine, J. & Dalgarno, L. Proc. natn. Acad. Sci. U.S.A. 71, 1342–1346 (1974).

    Article  ADS  CAS  Google Scholar 

  24. Steitz, J. A. Biological Regulation and Control (ed. Goldberger, R.) 349–399 (Plenum, New York, 1979).

    Book  Google Scholar 

  25. Hartley, M. R., Head, C. W. & Gardiner, J. Acides Nucléiques et Synthèse des Protéines chez les Végétaux (eds Bogorad, L. & Weil, J. H.) 419–423 (CNRS, Paris, 1977).

    Google Scholar 

  26. Bohnert, H.-J., Driesel, A. J. & Herrmann, R. G. Acides Nucléiques et Synthèse des Protéines chez les Végétaux (eds Bogorad, L. & Weil, J. H.) 213–218 (CNRS, Paris, 1977).

    Google Scholar 

  27. Rochaix, J. D. & Malnoe, P. Cell 15, 661–670 (1978).

    Article  CAS  Google Scholar 

  28. Wollgiehn, R. & Parthier, B. Plant Sci. Lett. 16, 203–210 (1979).

    Article  CAS  Google Scholar 

  29. Sprinzl, M., Grueter, F., Spelzhaus, A. & Gauss, D. H. Nucleic Acids Res. 8, r1–r22 (1980).

    Article  CAS  Google Scholar 

  30. Abelson, J. A. Rev. Biochem. 48, 1035–1069 (1979).

    Article  CAS  Google Scholar 

  31. Suddath, F. L. et al. Nature 248, 20–24 (1974).

    Article  ADS  CAS  Google Scholar 

  32. Robertus, J. D. et al. Nature 250, 546–551 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, L., Kössel, H. & Stutz, E. Sequencing of 16S–23S spacer in a ribosomal RNA operon of Euglena gracilis chloroplast DNA reveals two tRNA genes. Nature 286, 908–910 (1980). https://doi.org/10.1038/286908a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286908a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing