Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Insulin triggers cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase

Abstract

Regulation of blood glucose levels by the liver is primarily achieved by the action of two peptide hormones, insulin and glucagon, which bind to specific receptors associated with the hepatocyte plasma membrane. Whilst the molecular action of glucagon at the level of the cell plasma membrane in activating adenylate cydase is relatively well understood, we know little, if anything, of the molecular consequences of insulin occupying its receptor. We demonstrate here that insulin, at physiologically relevant concentrations, can trigger the cyclic AMP-dependent activation and phosphorylation of a low Km cyclic AMP phosphodiesterase attached to the liver plasma membrane. Such an effect may in part explain the ability of insulin to inhibit the increase in cellular cyclic AMP content that glucagon alone produces by activation of adenylate cyclase. Our observation that basal, intracellular cyclic AMP levels are insufficient to allow insulin to activate the cyclic AMP phosphodiesterase, yet those cyclic AMP levels achieved after exposure of the cells to glucagon are sufficient, gives a molecular rationale to Butcher and Sutherland's proposal1 that it is necessary to first elevate cellular cyclic AMP levels before they can be depressed by insulin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jefferson, L. S., Exton, J. H., Butcher, R. W., Sutherland, E. W. & Park, C. W. J. biol. Chem. 243, 1031–1038 (1968).

    CAS  PubMed  Google Scholar 

  2. Marchmont, R. J. & Houslay, M. D. Biochem. J. 187, 381–392 (1980).

    Article  CAS  Google Scholar 

  3. Exton, J. H., Harper, S. C., Tucker, A. L., Flagg, T. L. & Park, C. R. Biochim. biophys. Acta 329, 41–57 (1973).

    Article  CAS  Google Scholar 

  4. Smith, S. A., Elliott, K. R. F. & Pogson, C. I. Biochem. J. 176, 817–825 (1978).

    Article  CAS  Google Scholar 

  5. Blackmore, P. F., Assimacopoulos-Jeannet, F., Chan, T. M. & Exton, J. H. J. biol. Chem. 254, 2828–2834 (1979).

    CAS  PubMed  Google Scholar 

  6. Nimmo, H. G. & Cohen, P. Adv. Cyclic Nucleotide Res. 8, 145–266 (1977).

    CAS  Google Scholar 

  7. Cuatrecasas, P. A. Rev. Biochem. 43, 169–214 (1974).

    Article  CAS  Google Scholar 

  8. Thompson, W. J. & Strada, S. J. in Receptors and Hormone Action Vol. 3 (eds Birnbaumer, L. & O'Malley, B. W.) 553–577 (Academic, New York, 1978).

    Book  Google Scholar 

  9. Westwood, S. J., Luzio, J. P., Flockhart, D. A. & Siddle, K. Biochim. biophys. Acta 583, 454–466 (1979).

    Article  CAS  Google Scholar 

  10. Loten, E. G., Assimacopoulos-Jeannet, F. D., Exton, J. H. & Park, C. R. J. biol. Chem. 253, 746–757 (1978).

    CAS  PubMed  Google Scholar 

  11. Pilkis, S. J., Exton, J. H., Johnson, R. A. & Park, C. R. Biochim. biophys. Acta 343, 250–267 (1974).

    Article  CAS  Google Scholar 

  12. Desbuquois, B., Krug, F. & Cuatrecasas, P. Biochim. biophys. Acta 343, 101–120 (1974).

    Article  CAS  Google Scholar 

  13. Loten, E. G. & Sneyd, J. G. T. Biochem. J. 120, 187–193 (1970).

    Article  CAS  Google Scholar 

  14. Arch, J. R. S. & Newsholme, E. A. Biochem. J. 158, 603–622 (1976).

    Article  CAS  Google Scholar 

  15. Fell, D. A. J. theor. Biol. 84, 361–385 (1980).

    Article  CAS  Google Scholar 

  16. Desbuquois, B., Willeput, J. & Huet de Froberville, A. FEBS Lett. 106, 338–344 (1979).

    Article  CAS  Google Scholar 

  17. Kiss, Z. FEBS Lett. 92, 29–32 (1978).

    Article  CAS  Google Scholar 

  18. Severson, D. L., Denton, R. M., Pask, H. T. & Randle, P. J. Biochem. J. 140, 225–237 (1974).

    Article  CAS  Google Scholar 

  19. Jarrett, L. & Seals, J. R. Science 206, 1407–1408 (1979).

    Article  ADS  Google Scholar 

  20. Lamer, J. et al. Science 206, 1408–1410 (1979).

    Article  ADS  Google Scholar 

  21. Czech, M. P. A. Rev. Biochem. 46, 359–384 (1977).

    Article  CAS  Google Scholar 

  22. Walsh, D. A. et al. J. biol. Chem. 246, 1977–1985 (1971).

    CAS  PubMed  Google Scholar 

  23. Thompson, W. J. & Appleman, M. M. Biochemistry 10, 311–316 (1971).

    Article  CAS  Google Scholar 

  24. Rutten, W. J., Schoot, B. M. & Dupont, J. S. H. Biochim. biophys. Acta 315, 378–383 (1973).

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. Nature 222, 680–682 (1970).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchmont, R., Houslay, M. Insulin triggers cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase. Nature 286, 904–906 (1980). https://doi.org/10.1038/286904a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286904a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing