Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

How many types of erythroleukaemia are induced by retroviruses in mice?

Abstract

Erythroleukaemia, until now defined by morphological criteria, has been observed in mice infected with several distinct virological entities, including the polycythaemia-inducing strains of Friend virus complex (FV-P)1,2, the anaemia-inducing strains of Friend3 and Rauscher4,5 virus complex (FV-A and RV-A, respectively) and various helper-independent virus isolates derived from the FV-A6 or RV-A7 complexes. Whereas erythroleukaemia develops rapidly (within 2–3 weeks) in mice infected with any strain of FV or RV, the helper-independent virus alone is pathogenic in mice only if they are infected neonatally6,7. We now describe how two biological markers can be used to distinguish among the otherwise confusing array of virus-induced erythroleukaemias in mice. The evidence suggests that there are three different classes of this disease: (1) those (S+E+) from which both defective spleen focus-forming virus (SFFV) and erythropoietin-independent, erythroid colony forming units (CFU-EI) can be recovered, (2) those (S+E) from which only SFFV (but not CFU-EI) can be recovered, and (3) those (SE) from which neither SFFV nor CFU-EI can be recovered. There is a consistent association between the type of virus used to induce the erythroleukaemia and the class of the disease induced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stephenson, J. R., Axelrad, A. A. & McLeod, D. L. J. natn. Cancer Inst. 48, 531–539 (1972).

    CAS  Google Scholar 

  2. Steeves, R. A. J. natn. Cancer Inst. 54, 289–297 (1975).

    Article  CAS  Google Scholar 

  3. Zajdela, R. Bull. Cancer 49, 351–373 (1962).

    Google Scholar 

  4. Siegel, B. V., Weaver, W. J. & Koler, R. D. Nature 201, 1042–1043 (1964).

    Article  ADS  CAS  Google Scholar 

  5. Cox, K. O. & Keast, D. J. natn. Cancer Inst. 50, 941–946 (1973).

    Article  CAS  Google Scholar 

  6. Troxler, D. H. & Scolnick, E. M. Virology 85, 17–27 (1978).

    Article  CAS  Google Scholar 

  7. Weitz-Hamburger, A. et al. Cancer Res. 33, 104–111 (1973).

    CAS  PubMed  Google Scholar 

  8. Friend, C. J. exp. med. 105, 307–318 (1957).

    Article  CAS  Google Scholar 

  9. Metcalf, D., Furth, J. & Buffett, R. F. Cancer Res. 19, 52–59 (1959).

    CAS  PubMed  Google Scholar 

  10. Tambourin, P. & Wendling, F. Nature new Biol. 234, 230–233 (1971).

    Article  CAS  Google Scholar 

  11. Fieldsteel, A. H., Dawson, P. J. & Bostick, W. L. Cancer Res. 23, 355–362 (1963).

    CAS  PubMed  Google Scholar 

  12. Mirand, E. A. et al. Proc. Soc. exp. Biol. Med. 127, 900–904 (1968).

    Article  CAS  Google Scholar 

  13. Rauscher, F. J. J. natn. Cancer Inst. 29, 515–543 (1962).

    CAS  Google Scholar 

  14. Kirsten, W. H. & Mayer, L. A. J. natn. Cancer Inst. 39, 311–335 (1967).

    CAS  Google Scholar 

  15. Pope, J. H. Aust. J. exp. Biol. med. Sci. 41, 349–362 (1962).

    Article  Google Scholar 

  16. Dawson, P. J., Dresler, S. L. & Fieldsteel, A. H. Cancer Res. 39, 1611–1615 (1979).

    CAS  PubMed  Google Scholar 

  17. Fieldsteel, A. H., Kurahara, C. & Dawson, P. J. Nature 223, 1274 (1969).

    Article  ADS  CAS  Google Scholar 

  18. Eckner, R. J. & Steeves, R. A. Nature new Biol. 229, 241–243 (1971).

    Article  CAS  Google Scholar 

  19. Bentvelzen, P., Aarssen, A. M. & Brinkhof, J. Nature new Biol. 239, 122–123 (1972).

    Article  CAS  Google Scholar 

  20. Axelrad, A. A. & Steeves, R. A. Virology 24, 513–518 (1964).

    Article  CAS  Google Scholar 

  21. Pluznik, D. H. & Sachs, L. J. natn. Cancer Inst. 35, 535–546 (1964).

    Google Scholar 

  22. Troxler, D. H. et al. Virology 76, 602–615 (1977).

    Article  CAS  Google Scholar 

  23. Troxler, D. H. et al. Proc. natn. Acad. Sci. U.S.A. 74, 4671–4675 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Troxler, D. H. et al. Virology 102, 28–45 (1980).

    Article  CAS  Google Scholar 

  25. Boiron, M. et al. J. natn. Cancer Inst. 35, 865–884 (1965).

    CAS  Google Scholar 

  26. Dunn, T. B. & Green, A. W. J. natn. Cancer Inst. 36, 987–1001 (1966).

    CAS  Google Scholar 

  27. Liao, S. K. & Axelrad, A. A. Int. J. Cancer 15, 467–482 (1975).

    Article  CAS  Google Scholar 

  28. Ostertag, W. et al. J. Virol. 33, 573–582 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Golde, D. W. et al. Proc. natn. Acad. Sci. U.S.A. 76, 962–966 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Mirand, E. A. in Regulation of Erythropoiesis (eds Gordon, A. S., Condorelli, M. Peschle, C.) 333–341 (Il Ponte, Milan, 1971).

    Google Scholar 

  31. Steinheider, G., Seidel, H. J. & Kreja, L. Experientia 35, 1173–1175 (1979).

    Article  CAS  Google Scholar 

  32. Morse, B. et al. Blood 51, 623–632 (1978).

    CAS  PubMed  Google Scholar 

  33. Oliff, A. I. et al. J. Virol. 33, 475–486 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sher, C. D., Scolnick, E. M. & Siegler, R. Nature 256, 225–226 (1975).

    Article  ADS  Google Scholar 

  35. Dawson, R. J., Rose, W. M. & Fieldsteel, A. H. Br. J. Cancer 20, 114–121 (1966).

    Article  CAS  Google Scholar 

  36. Steeves, R. A. et al. J. natn. Cancer Inst. 46, 1209–1217 (1971).

    ADS  CAS  Google Scholar 

  37. Ishimoto, A. & Maeda, M. J. natn. Cancer Inst. 44, 361–368 (1970).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, R., Steeves, R. How many types of erythroleukaemia are induced by retroviruses in mice?. Nature 286, 615–617 (1980). https://doi.org/10.1038/286615a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286615a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing