Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ethyl β-carboline-3-carboxylate shows differential benzodiazepine receptor interaction

Abstract

High-affinity binding of 3H-diazepam and 3H-flunitrazepam has provided evidence for the presence of benzodiazepine receptors on brain neurones1–6. Pharmacological evidence showing a clear correlation between receptor affinity and in vivo pharmacological potency for several benzodiazepines7 and a link between benzodiazepine receptors and GABA (γ-aminobutyric acid) receptors at the molecular level8,9, indicates that these receptors are relevant to the pharmacological and clinical effects of benzodiazepines. In searching for possible endogeneous ligands for benzodiazepine receptors we have recently isolated ethyl β-carboline-3-carboxylate (β-CCE) from human urine and brain, and shown that β-CCE has a higher affinity than diazepam for brain benzodiazepine receptors10. β-CCE itself is probably not present in the brain, but may be closely related to an endogenous benzodiazepine receptor ligand10. We report here that β-CCE, in contrast to benzodiazepines, can distinguish clearly between benzodiazepine receptors in cerebellum and hippocampus. This result strongly indicates that benzodiazepine receptors are not a single class of non-interacting entities. It has not been possible to determine whether two distinct receptors are present and/or whether true negative cooperativity exists among hippocampal, but not cerebellar, benzodiazepine receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Squires, R. F. & Bræstrup, C. Nature 266, 732–734 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Bræstrup, C. & Squires, R. F. Proc. natn. Acad. Sci. U.S.A. 74, 3805–3809 (1977).

    Article  ADS  Google Scholar 

  3. Möhler, H. & Okada, T. Science 198, 849–851 (1977).

    Article  ADS  Google Scholar 

  4. Mackerer, C. R., Kochman, R. L., Bierschenck, A. & Bremner, S. S. J. Pharmac. exp. Ther. 206, 405–413 (1978).

    CAS  Google Scholar 

  5. Speth, R. C., Wastek, G. J., Johnson, P. C. & Yamamura, H. I. Life Sci. 22, 859–866 (1978).

    Article  CAS  Google Scholar 

  6. Bræstrup, C., Nielsen, M., Biggio, G. & Squires, R. F. Neurosci. Lett. 13, 219–224 (1979).

    Article  Google Scholar 

  7. Bræstrup, C. & Squires, R. F. Eur. J. Pharmac. 48, 263–270 (1978).

    Article  Google Scholar 

  8. Tallman, J. F., Thomas, J. W. & Gallager, D. W. Nature 274, 383–385 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Guidotti, A., Toffano, G. & Costa, E. Nature 275, 553–555 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Brastrup, C., Nielsen, M. & Olsen, C.-E. Proc. natn. Acad. Sci. U.S.A. 77, 2288–2292 (1980).

    Article  ADS  Google Scholar 

  11. Bræstrup, C., Nielsen, M., Krogsgaard-Larsen, P. & Falch, E. Nature 280, 331–333 (1979).

    Article  ADS  Google Scholar 

  12. Karobath, M. & Sperk, G. Proc. natn. Acad. Sci. U.S.A. 76, 1004–1006 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Beaumont, K., Chilton, W. S., Yamamura, H. I. & Enna, S. J. Brain Res. 148, 153–162 (1978).

    Article  CAS  Google Scholar 

  14. Squires, R. F. et al. Pharmac. Biochem. Behav. 10, 825–830 (1979).

    Article  CAS  Google Scholar 

  15. Costa, T., Rodbard, D. & Pert, C. B. Nature 277, 315–317 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Nielsen, M., Bræstrup, C. & Squires, R. F. Brain Res. 141, 342–346 (1978).

    Article  CAS  Google Scholar 

  17. Battersby, M. K., Richards, J. G. & Möhler, H. Eur. J. Pharmac. 57, 277–278 (1979).

    Article  CAS  Google Scholar 

  18. Tallman, J. F. et al. in Receptors for Neurotransmitters and Peptide Hormones (eds Pepeu, G., Kuhar, J. & Enna, S. J.) 277–283 (Raven, New York, 1980).

    Google Scholar 

  19. Birdsall, N. J. M., Burgen, A. S. V. & Hulme, E. C. Molec. Pharmac. 14, 723–736 (1978).

    CAS  Google Scholar 

  20. Bradbury, A. F., Smith, D. G., Snell, C. R., Birdsall, N. J. M. & Hulme, E. C. Nature 260, 793–795 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Lefkowitz, R. J., Mullikin, D. & Caron, M. G. J. biol Chem. 251, 4686–4692 (1976).

    CAS  PubMed  Google Scholar 

  22. Creese, I., Usdin, T. & Snyder, S. H. Nature 278, 577–578 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Lippa, A. S. et al. Brain Res. Bull. 5, Suppl. 2 (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, M., Bræstrup, C. Ethyl β-carboline-3-carboxylate shows differential benzodiazepine receptor interaction. Nature 286, 606–607 (1980). https://doi.org/10.1038/286606a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286606a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing