Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential

Abstract

Recent results, showing that the ubiquitous methane-utilizing bacteria (methanotrophs) can partially oxidize and, in some cases, extensively metabolize complex organic compounds, call for a reappraisal of their role in the cycling of elements in the biosphere. Possible environmental implications and opportunities for industrial exploitation are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ehhalt, D. H. in Microbial Production and Utilization of Gases (eds Schegel, H. G., Gottschalk, G. & Pfennig, N.) 13–22 (Erich Goltze, Göttingen, 1976).

    Google Scholar 

  2. Quayle, J. R. & Ferenci, T. Microbiol. Rev. 42, 251–273 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolfe, R. S. & Higgins, I. J. Int. Rev. Biochem. microbial Biochem. 21, 268–353 (1979).

    Google Scholar 

  4. Colby, J., Dalton, H. & Whittenbury, R. A. Rev. Microbiol. 33, 481–517 (1979).

    Article  CAS  Google Scholar 

  5. Higgins, I. J. in Diversity of Bacterial Respiratory Systems (ed. Knowles, C. J.) (CRC Press, Boca Raton, in the press).

  6. Higgins, I. J. & Hammond, R. C. in Biochemistry of Microbial Degradation (ed. Gibson, D. T.) (Dekker, New York, in the press).

  7. Quayle, J. R. Adv. microbial Physiol. 7, 119–203 (1972).

    Article  CAS  Google Scholar 

  8. Patt, T. E., Cole, G. C., Bland, J. & Hanson, R. S. J. Bact. 120, 955–964 (1974).

    CAS  PubMed  Google Scholar 

  9. Patel, R. N., Hou, C. T. & Felix, A. J. Bact. 136, 352–358 (1978).

    CAS  PubMed  Google Scholar 

  10. Wolf, H. J. & Hanson, R. S. J. gen. Microbiol. 114, 187–194 (1979).

    Article  Google Scholar 

  11. Panganiban, A. T., Patt, T. E., Hart, W. & Hanson, R. S. Appl. envir. Microbiol. 37, 303–309 (1979).

    CAS  Google Scholar 

  12. Zehnzer, A. J. B. & Brock, T. D. J. Bact. 137, 420–432 (1979).

    Google Scholar 

  13. Foster, J. W. & Davis, R. H. J. Bact. 91, 1924–1931 (1966).

    CAS  PubMed  Google Scholar 

  14. Hubley, J. H., Mitton, J. R. & Wilkinson, J. F. Archs Microbiol. 96, 365–368 (1974).

    Article  Google Scholar 

  15. O'Neill, J. G. & Wilkinson, J. F. J. gen. Microbiol. 100, 407–412 (1977).

    Article  CAS  Google Scholar 

  16. de Bont, J. A. M. & Mulder, E. G. J. gen. Microbiol. 83, 113–121 (1974).

    Article  Google Scholar 

  17. Higgins, I. J. et al. Biochem. biophys. Res. Commun. 89, 671–677 (1979).

    Article  CAS  Google Scholar 

  18. Stirling, D. I. & Dalton, H. FEMS Microbiol. Lett. 5, 315–318 (1979).

    Article  CAS  Google Scholar 

  19. Hou, C. T., Patel, R. N., Laskin, A. I. & Barnabe, N. Appl. envir. Microbiol. 38, 127–134 (1979).

    CAS  Google Scholar 

  20. Dalton, H. UK Patent Application No. 27886 (1977).

  21. Higgins, I. J. UK Patent Application No.19712 (1978); No. 2024205A (1980).

  22. Higgins, I. J. UK Patent Application No.35123 (1978); No. 2024205A (1980).

  23. Higgins, I. J. UK Patent Application No.7908357 (1979).

  24. Hou, C. T., Patel, R. N. & Laskin, A. I. UK Patent Application No. 7913054 (1979).

  25. Hou, C. T., Patel, R. N. & Laskin, A. I. UK Patent Application No. 7913062 (1979).

  26. Hou, C. T., Patel, R. N. & Laskin, A. I. UK Patent Application No. 7913063 (1979).

  27. Higgins, I. J. & Quayle, J. R. Biochem. J. 118, 210–218 (1970).

    Article  Google Scholar 

  28. Brannan, J., Scott, D. & Higgins, I. J. Proc. 3rd Int. Symp. microbial Growth on C 1 Compounds (in the press).

  29. Ribbons, D. W. & Michalover, J. L. FEBS Lett. 11, 41–44 (1970).

    Article  CAS  Google Scholar 

  30. Tonge, G. M., Harrison, D. E. F. & Higgins, I. J. Biochem. J. 161, 333–344 (1977).

    Article  CAS  Google Scholar 

  31. Ferenci, T. FEBS Lett. 41, 94–98 (1974).

    Article  CAS  Google Scholar 

  32. Ferenci, T., Strøm, T. & Quayle, J. R. J. gen. Microbiol. 91, 79–91 (1975).

    Article  CAS  Google Scholar 

  33. Ribbons, D. W. J. Bact. 122, 1351–1363 (1975).

    CAS  PubMed  Google Scholar 

  34. Colby, J., Stirling, D. I. & Dalton, H. Biochem. J. 165, 395–402 (1977).

    Article  CAS  Google Scholar 

  35. Hou, C. T., Patel, R., Laskin, A. J., Barnabe, N. & Marczak, I. Appl. envir. Microbiol. 38, 135–142 (1979).

    CAS  Google Scholar 

  36. Stirling, D. I. & Dalton, H. J. gen. Microbiol. 116, 277–283 (1980).

    CAS  Google Scholar 

  37. Hutchinson, D. W., Whittenbury, R. & Dalton, H. J. theor. Biol. 58, 325–335 (1976).

    Article  CAS  Google Scholar 

  38. Leadbetter, E. R. & Foster, J. W. Archs Mikrobiol. 35, 92–104 (1960).

    Article  CAS  Google Scholar 

  39. Wadzinski, A. M. & Ribbons, D. W. J. Bact. 123, 380–381 (1975).

    CAS  PubMed  Google Scholar 

  40. Patel, R. N., Hoare, S. L. & Hoare, D. S. Antonie van Leeuwenhoek 45, 499–511 (1979).

    Article  CAS  Google Scholar 

  41. Eccleston, M. & Kelly, D. P. J. gen. Microbiol. 75, 211–221 (1973).

    Article  CAS  Google Scholar 

  42. Higgins, I. J. & Gilbert, P. D. in The Oil Industry and Microbial Ecosystems (eds Chater, K. W. A. & Sommerville, H. J.) 80–117 (Institute of Petroleum, London, 1978).

    Google Scholar 

  43. Warner, P. J., Higgins, I. J. & Drozd, J. W. FEMS microbiol. Lett. 7, 181–185 (1980).

    Article  CAS  Google Scholar 

  44. Higgins, I. J. & Hill, H. A. O. UK Patent Application No. 2033428 (1980).

  45. Higgins, I. J. et al. in Hydrocarbons in Biotechnology (eds Harrison, D. E. F., Higgins, I. J. & Watkinson, R. J.) (Institute of Petroleum, London, in the press).

  46. Cass, A. E. G. et al. Nature 285, 673–674 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higgins, I., Best, D. & Hammond, R. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature 286, 561–564 (1980). https://doi.org/10.1038/286561a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/286561a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing