Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock

Abstract

Circadian clocks are complex biochemical systems that cycle with a period of approximately 24 hours. They integrate temporal information regarding phasing of the solar cycle, and adjust their phase so as to synchronize an organism's internal state to the local environmental day and night1,2. Nocturnal light is the dominant regulator of this entrainment. In mammals, information about nocturnal light is transmitted by glutamate released from retinal projections to the circadian clock in the suprachiasmatic nucleus of the hypothalamus. Clock resetting requires the activation of ionotropic glutamate receptors, which mediate Ca2+ influx3. The response induced by such activation depends on the clock's temporal state: during early night it delays the clock phase, whereas in late night the clock phase is advanced. To investigate this differential response, we sought signalling elements that contribute solely to phase delay. We analysed intracellular calcium-channel ryanodine receptors, which mediate coupled Ca2+ signalling. Depletion of intracellular Ca2+ stores during early night blocked the effects of glutamate. Activators of ryanodine receptors induced phase resetting only in early night; inhibitors selectively blocked delays induced by light and glutamate. These findings implicate the release of intracellular Ca2+ through ryanodine receptors in the light-induced phase delay of the circadian clock restricted to the early night.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glu-induced phase advance of SCN neuronal activity rhythm is dependent on PKG, whereas phase delay is not.
Figure 2: SCN sensitivity to caffeine and to the immunophilin ligands FK506 and rapamycin is restricted to early night.
Figure 3: RyR inhibitors selectively block Glu-induced phase delays in the early night.
Figure 4: Dantrolene blocks light-induced phase delays of wheel-running activity rhythm of free-running hamsters.

Similar content being viewed by others

References

  1. Pittendrigh, C. S. Circadian rhythms and the circadian organization of living organisms. Cold Spring Harb. Symp. Quant. Biol. 25, 159–184 (1960).

    Article  CAS  Google Scholar 

  2. De Coursey, P. J. Daily light sensitivity rhythm in a rodent. Science 131, 33–35 (1960).

    Article  ADS  CAS  Google Scholar 

  3. Ding, J. M. et al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266, 1713–1717 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Prosser, R. A. & Gillette, M. U. The mammalian circadian clock in the suprachiasmatic nucleus is reset in vitro by cAMP. J. Neurosci. 9, 1073–1081 (1989).

    Article  CAS  Google Scholar 

  5. Prosser, R. A., McArthur, A. J. & Gillette, M. U. cGMP induces phase shifts of a mammalian circadian pacemaker at night, in antiphase to cAMP effects. Proc. Natl Acad. Sci. USA 86, 6812–6815 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Liu, C., Ding, J. M., Faiman, L. E. & Gillette, M. U. Coupling of muscarinic cholinergic receptors and cGMP in nocturnal regulation of the suprachiasmatic circadian clock. J. Neurosci. 17, 659–666 (1997).

    Article  CAS  Google Scholar 

  7. Weber, E. T., Gannon, R. L. & Rea, M. A. cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci. Lett. 197, 227–230 (1995).

    Article  CAS  Google Scholar 

  8. Mathur, A., Golombek, D. A. & Ralph, M. R. cGMP-dependent kinase inhibitors block light-induced phase advances of circadian rhythms in vivo. Am. J. Physiol. 270, R1031–R1036 (1996).

    CAS  PubMed  Google Scholar 

  9. Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R. & Dawson, A. P. Thapsigargin, a tumor promoter, discharges Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl Acad. Sci. USA 87, 2466–2470 (1990).

    Article  ADS  CAS  Google Scholar 

  10. McPherson, P. S. et al. The brain ryanodine receptor: A caffeine-sensitive calcium release channel. Neuron 7, 17–25 (1991).

    Article  CAS  Google Scholar 

  11. Zatz, M. & Heath, J. R. Calcium and photoentrainment in chick pineal cells revisited: effects of caffeine, thapsigargin, EGTA, and light on the melatonin rhythm. J. Neurochem. 65, 1332–1341 (1995).

    Article  CAS  Google Scholar 

  12. Dent, M., Diaz-Munoz, M., Chavez, J. L. & Aguilar-Roblero, R. Circadian variations of ryanodine receptor in the suprachiasmatic nucleus of the rat. Neurosci. Abstr. 22, 139.9 (1996).

    Google Scholar 

  13. Brillantes, A. B. et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513–523 (1994).

    Article  CAS  Google Scholar 

  14. Kaftan, E., Marks, A. R. & Ehrlich, B. E. Effects of rapamycin on ryanodine receptor/Ca2+-release channels from cardiac muscle. Circ. Res. 78, 990–997 (1996).

    Article  CAS  Google Scholar 

  15. Snyder, S. H. & Sabatini, D. M. Immunophilins and the nervous system. Nature Med. 1, 32–37 (1995).

    Article  CAS  Google Scholar 

  16. Parness, J. & Palnikar, S. S. Identification of dantrolene binding sites in porcine skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 270, 18465–18472 (1995).

    Article  CAS  Google Scholar 

  17. Fredholm, B. B. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol. Toxicol. 76, 93–101 (1995).

    Article  CAS  Google Scholar 

  18. Kunz, J. & Hall, M. N. Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. Trends Biochem. Sci. 18, 334–338 (1993).

    Article  CAS  Google Scholar 

  19. McPherson, P. S. & Campbell, K. P. Solubilization and biochemical characterization of the high affinity ryanodine receptor from rabbit brain membranes. J. Biol. Chem. 265, 18454–18460 (1990).

    CAS  PubMed  Google Scholar 

  20. McPherson, P. S. & Campbell, K. P. Characterization of the major brain form of the ryanodine receptor/Ca2+ release channel. J. Biol. Chem. 268, 19785–19790 (1993).

    CAS  PubMed  Google Scholar 

  21. 1. Weber, E. T., Gannon, R. L., Michel, A. M., Gillette, M. U. & Rea, M. A. Nitric oxide synthase inhibitor blocks light-induced phase shifts of the circadian activity rhythm, but not c-fos expression in the suprachiasmatic nucleus of the Syrian hamster. Brain Res. 692, 137–142 (1995).

    Article  CAS  Google Scholar 

  22. Sitsapesan, R., McGarry, S. J. & Williams, A. J. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol. Sci. 16, 386–391 (1995).

    Article  CAS  Google Scholar 

  23. Pawlikowska, L., Cottrell, S. E., Harms, M. B., Li, Y. & Rosenberg, P. A. Extracellular synthesis of cADP-ribose from nicotinamide-adenine dinculeotide by rat cortical astrocytes in culture. J. Neurosci. 16, 5372–5881 (1996).

    Article  CAS  Google Scholar 

  24. Xu, L., Eu, J. P., Meissner, G. & Stamler, J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-nitrosylation. Science 279, 234–237 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Obenaus, A., Mody, I. & Baimbridge, K. G. Dantrolene-Na+ blocks induction of long-term potentiation in hippocampal slices. Neurosci. Lett. 98, 172–178 (1989).

    Article  CAS  Google Scholar 

  26. O'Mara, S. M., Rowan, M. J. & Anwyl, R. Dantrolene inhibits long-term depression and depotentiation of synaptic transmission in the rat dentate gyrus. Neuroscience 68, 621–624 (1995).

    Article  CAS  Google Scholar 

  27. Hunter-Ensor, M., Ousley, A. & Sehgal, A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84, 677–685 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Best and R. Gillette for critical evaluation of the manuscript; T. Weber and C. Colwell for technical advice on the i.c.v. procedure; P. Imrey for statistical advice. These studies were supported by grants from the NINDS of the NIH and a university scholar award, UIUC (M.U.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha U. Gillette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Buchanan, G., Tischkau, S. et al. A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394, 381–384 (1998). https://doi.org/10.1038/28639

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28639

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing