Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of cytochrome c′: a dimeric, high-spin haem protein

Abstract

The bacterial cytochromes c′ (ref. 1) occur in various photosynthetic and denitrifying bacteria, where they are presumed to function in electron transport2. Most cytochromes c′ are isolated as dimeric molecules composed of two identical subunits of 14,000 molecular weight (MW), with each polypeptide chain incorporating a protohaem IX prosthetic group covalently bound through thioether linkages formed by condensation of two cysteine side chains with the haem vinyl groups3. Although a similar mode of covalent haem attachment is found in members of the well studied mitochondrial cytochrome c family4, the cytochromes c′ are, in contrast, high-spin haem proteins (hence the prime designation) which bind neutral ligands5, characteristic properties generally associated with members of the oxygen-binding globin family6. Here we present a preliminary structural description of the cytochrome c′ derived from the photosynthetic, purple non-sulphur bacterium Rhodospirillum molischianum, and show that it bears little structural resemblance to members of either the cytochrome c or globin structural families. The cytochrome c′ monomer structure is, instead, principally organized as a left-twisted, 4-α-helical bundle, a structural motif previously observed in several other sequentially and functionally unrelated proteins7 13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vernon, L. P. & Kamen, M. D. J. biol. Chem. 211, 643–675 (1954).

    CAS  PubMed  Google Scholar 

  2. Bartsch, R. G. in The Photosynthetic Bacteria (eds Clayton, R. K. & Sistrom, W. R.) 249–279 (Plenum, New York, 1978).

    Google Scholar 

  3. Barrett, J. & Kamen, M. D. Biochim. biophys. Acta 50, 573–575 (1961).

    Article  CAS  PubMed  Google Scholar 

  4. Salemme, F. R. A. Rev. Biochem. 46, 299–329 (1977).

    Article  CAS  Google Scholar 

  5. Taniguchi, S. & Kamen, M. D. Biochim. biophys. Acta 74, 438–455 (1963).

    Article  CAS  PubMed  Google Scholar 

  6. Perutz, M. F. A. Rev. Biochem. 48, 327–386 (1979).

    Article  CAS  Google Scholar 

  7. Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R. & Klug, A. Nature 276, 362–368 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Stubbs, G., Warren, S. & Holmes, K. Nature 267, 216–221 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Stenkamp, R. E., Sieker, L. C., Jensen, L. H. & McQueen, J. E. Jr Biochemistry 17, 2499–2504 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Ward, K. B., Hendrickson, W. A. & Klippenstein, G. L. Nature 257, 818–821 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hendrickson, W. A., Klippenstein, G. L. & Ward, K. B. Proc. natn. Acad. Sci. U.S.A. 72, 2160–2164 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Banyard, S. H., Stammers, D. K. & Harrison, P. M. Nature 271, 282–284 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Mathews, F. S., Bethge, P. H. & Czerwinski, E. W. J. biol. Chem. 254, 1699–1706 (1979).

    CAS  PubMed  Google Scholar 

  14. Weber, P. & Salemme, F. R. J. molec. Biol. 117, 815–820 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Cork, C., Hamlin, R. C., Vernon, W., Xuong, Ng. H. & Perez-Mendez, V. Acta crystallogr. A31, 702–703 (1975).

    Article  Google Scholar 

  16. Xuong, Ng. H., Freer, S. T., Hamlin, R., Neilson, C. & Vernon, W. Acta crystallogr. A34, 289–296 (1978).

    Article  Google Scholar 

  17. Matthews, B. W. Acta crystallogr. 20, 82–86 (1966).

    Article  CAS  Google Scholar 

  18. Ambler, R. P. in Abstr. 3rd int. Symp. Photosynthetic Prokaryotes (ed. J. M. Nichols) E17 (Oxford, 1979).

    Google Scholar 

  19. Salemme, F. R. & Fehr, D. G. J. molec. Biol. 70, 697–700 (1972).

    Article  CAS  PubMed  Google Scholar 

  20. Cusanovich, M. A. Biochim. biophys. Acta 236, 238–241 (1971).

    Article  CAS  PubMed  Google Scholar 

  21. Ehrenberg, A. & Kamen, M. D. Biochim. biophys. Acta 102, 333–340 (1965).

    Article  CAS  PubMed  Google Scholar 

  22. Maltempo, M. M., Moss, T. H. & Cusanovich, M. A. Biochim. biophys. Acta 342, 290–305 (1974).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, P., Bartsch, R., Cusanovich, M. et al. Structure of cytochrome c′: a dimeric, high-spin haem protein. Nature 286, 302–304 (1980). https://doi.org/10.1038/286302a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286302a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing