Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Model for antenatal diagnosis of β-thalassaemia and other monogenic disorders by molecular analysis of linked DNA polymorphisms

Abstract

Polymorphisms of DNA restriction sites within the human fetal globin genes have been used to identify chromosomes that carry β-thalassaemia genes in individuals heterozygous for this disease. This has allowed an antenatal diagnosis for β-thalassaemia to be carried out by observation of the pattern of the inherited polymorphism of a linked DNA sequence not involved in the genetic pathogenesis of the disease. In the populations we have investigated there is no constant pattern of polymorphism that segregates with the β-thalassaemia gene. The use of linked polymorphisms should, therefore, be applicable to antenatal diagnosis both of β-thalassaemia and of any other single-gene defect for which there is a DNA probe specific for a sequence linked to the affected locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carter, C. O. J. med. Genet. 14, 316–320 (1977).

    Article  CAS  Google Scholar 

  2. Siggers, D. C. in Prenatal Diagnosis of Genetic Disease, 20–22 (Blackwell, Oxford, 1978).

    Google Scholar 

  3. McKusick, V. A. Mendelian Inheritance in Man. Catalogues of Autosomal Dominant, Autosomal Recessive and X-Linked Phenotypes 4th edn (Johns Hopkins Hospital University Press, Baltimore, 1974).

    Google Scholar 

  4. Fairweather, D. V. I. et al. Br. med. J. 1, 350 (1978).

    Article  CAS  Google Scholar 

  5. Alter, B. P. et al. New Engl. J. Med. 295, 1437–1443 (1976).

    Article  CAS  Google Scholar 

  6. Ottolenghi, S. et al. Nature 251, 389–392 (1974); Taylor, J. M. et al. Nature 251, 392–393 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Orkin, S. H. et al. Cell 17, 33–42 (1979).

    Article  CAS  Google Scholar 

  8. Embrey, S. et al. J. clin. Invest. 63, 1307–1310 (1979).

    Article  Google Scholar 

  9. Dozy, A. M. et al. Nature 250, 605–607 (1979).

    Article  ADS  Google Scholar 

  10. Kan, Y. W. et al. New Engl. J. Med. 295, 1165–1167 (1976).

    Article  CAS  Google Scholar 

  11. Dozy, A. M. et al. J. Am. med. Ass. 241, 1610–1612 (1979).

    Article  CAS  Google Scholar 

  12. Orkin, S. H. et al. New Engl. J. Med. 299, 166–172 (1978).

    Article  CAS  Google Scholar 

  13. Orkin, S. H. et al. Proc. natn. Acad. Sci. U.S.A. 76, 2400–2404 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Flavell, R. A. et al. Nucleic Acids Res. 6, 2749–2760 (1979).

    Article  CAS  Google Scholar 

  15. Kan, Y. W. & Dozy, A. M. Lancet ii, 910–912 (1978).

    Article  Google Scholar 

  16. Kan, Y. W. & Dozy, A. M. Proc. natn. Acad. Sci. U.S.A. 75, 5631–5635 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  18. Botchan, M., Topp, W. & Sambrook, J. Cell 9, 269–287 (1976).

    Article  CAS  Google Scholar 

  19. Jeffrys, A. J. & Flavell, R. A. Cell 12, 429–439 (1977).

    Article  Google Scholar 

  20. Jeffrys, A. J. Cell 18, 1–10 (1979).

    Article  Google Scholar 

  21. Tuan, D. et al. Nucleic Acids Res. 6, 2519–2544 (1979).

    Article  CAS  Google Scholar 

  22. Roberts, R. J. CRC crit. Rev. Biochem. 123–164 (1976).

  23. Gilbert, W. Nature 271, 501 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Flavell, R. A. et al. Cell 15, 25–41 (1978).

    Article  CAS  Google Scholar 

  25. Little, P. F. R. et al. Nature 278, 227–231 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Fritsch, E. F., Lawn, R. M. & Maniatis, T. Nature 279, 598–603 (1979).

    Article  ADS  CAS  Google Scholar 

  27. Lawn, R. M. et al. Cell 15, 1157–1174 (1978).

    Article  CAS  Google Scholar 

  28. Bernards, R. et al. Proc. natn. Acad. Sci. U.S.A. 76, 4827–4831 (1979).

    Article  ADS  CAS  Google Scholar 

  29. Ramirez, F. et al. Nucleic Acids Res. 1147–1162 (1979).

  30. Little, P. F. R. et al. Nature 273, 640–643 (1978).

    Article  ADS  CAS  Google Scholar 

  31. Weatherall, D. J., Clegg, J. B. & Naughton, M. A. Nature 208, 1061–1065 (1965).

    Article  ADS  CAS  Google Scholar 

  32. Bodmer, W. F. & Cavalli-Sforza, L. L. in Genetics, Evolution and Man (W. H. Freeman, San Francisco, 1976).

    Google Scholar 

  33. Kurnit, D. M. Lancet i, 104 (1979).

    Article  Google Scholar 

  34. Kan, Y. W. et al. New Engl. J. Med. 302, 185–188 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, P., Annison, G., Darling, S. et al. Model for antenatal diagnosis of β-thalassaemia and other monogenic disorders by molecular analysis of linked DNA polymorphisms. Nature 285, 144–147 (1980). https://doi.org/10.1038/285144a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/285144a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing