Letter | Published:

Glycocalyx is not required for slow inward calcium current in isolated rat heart myocytes

Abstract

The importance of the slow inward calcium current (Isi) in the excitation–contraction coupling process of cardiac muscle is well documented1,2. The current can be attributed mainly to a calcium translocation from the extracellular space into the cell or a subsarcolemmal compartment of it3,4. Isi has been suggested to have its source in and to be controlled by the surface coat of the sarcolemma (glycocalyx)5. The glycocalyx is destroyed in myocytes dissociated from adult heart tissue with solutions containing low calcium, collagenase and hyaluronidase6,7 (Fig. 1). By comparing the Isi data obtained in isolated myocytes with those reported for trabeculae or papillary muscles, we have now obtained evidence suggesting that the glycocalyx is not important in the genesis of Isi.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Reuter, H. & Scholz, H. J. Physiol., Lond. 264, 7–47 (1977).

  2. 2

    Reuter, H. A. Rev. Physiol. 41, 413–424 (1979).

  3. 3

    Bassingthwaight, J. B. & Reuter, H. in Electrical Phenomena of the Heart (ed. DeMello, W. P.) 353–395 (Academic, New York, 1972).

  4. 4

    Trautwein, W., McDonald, T. F. & Tripathi, O. Pflügers Arch. ges. Physiol. 354, 55–74 (1975).

  5. 5

    Langer, G. A. A. Rev. Physiol. 35, 55–86 (1973); Fedn Proc. 35, 1274–1278 (1976); Am. J. Physiol. 235, H 461–H 468 (1978).

  6. 6

    Carlson, E. C. et al. J. molec. cell. Cardiol. 10, 449–459 (1978).

  7. 7

    Vahouny, G. V., Wei, R. W., Tamboli, A. & Albert, E. N. J. molec. cell. Cardiol. 11, 339–357 (1979).

  8. 8

    Glick, M. R., Burns, A. H. & Reddy, W. J. Analyt. Biochem. 61, 32–42 (1974).

  9. 9

    Zimmerman, A. N. E. & Hülsmann, W. E. Nature 211, 646–647 (1966).

  10. 10

    Powell, T., Terrar, D. A. & Twist, V. W. J. Physiol., Lond. 282, 23–24P (1978); J. Physiol., Lond. 284, 148 (1978).

  11. 11

    Lee, K. S., Weeks, T. A., Kao, R. L., Akaike, V. & Brown, A. M. Nature 278, 269–271 (1979).

  12. 12

    McDonald, T. F. & Trautwein, W. J. Physiol., Lond. 274, 193–216 (1978); J. molec. cell. Cardiol. 10, 387–394 (1978).

  13. 13

    Kohlhardt, M., Bauer, B., Krause, H. & Fleckenstein, A. Pflügers Arch. ges. Physiol. 335, 309–322 (1972).

  14. 14

    Besseau, A. & Bargouil, Y. M. J. Physiol., Lond. 204, 95–96 (1969).

  15. 15

    Leoty, C. J. Physiol., Lond. 239, 237–249 (1974).

  16. 16

    Payet, M. D., Schanne, O. F., Ruiz-Ceretti, E. & Demers, J. M. J. Physiol., Paris 74, 31–35 (1978).

  17. 17

    Frank, J. S., Langer, G. A., Nudd, L. M. & Seraydarin, K. Circulation Res. 41, 702–744 (1977).

  18. 18

    Dreyer, F. & Peper, K. Pflügers Arch. ges. Physiol. 348, 263–272 (1974).

  19. 19

    Isenberg, G. Pflügers Arch. ges. Physiol. 380, 91–98 (1979).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.