Letter | Published:

Enrichment of 210Pb and 210Po in the sea-surface microlayer

Abstract

Chemical fractionation at the air–sea interface is frequently suggested1–5 as a possible mechanism contributing to the enrichment of a number of trace metals in the marine atmosphere6,7. The origin of the long-lived radon daughters (210Pb, 210Bi and 210Po) in the atmosphere is of special interest because of their use in the estimation of tropospheric aerosol residence times8. It has been proposed9 that injection of a fractionated marine component by bubbles bursting at the sea surface might be responsible for the occurrence of anomalously high atmospheric 210Po/210Pb ratios in Antarctica10 and Hawaii11. Here we report the first measurements of 210Pb (t1/2 = 22.3 yr) and 210Po (t1/2 = 138 d) in the sea-surface microlayer. These measurements were made to determine whether or not a significant flux of these radionuclides from the sea surface to the atmosphere could occur. We also introduce a method for treating chemical data that we believe may be useful in determining the origin of the trace-metal enrichments often observed1,2 in the microlayer.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Duce, R. A. et al. Science 176, 161–163 (1972).

  2. 2

    Piotrowicz, S. R., Ray, B. J., Hoffman, G. L. & Duce, R. A. J. geophys. Res. 77, 6515–6527 (1972).

  3. 3

    Van Grieken, R. E., Johansson, T. B. & Winchester, J. W. J. Rech. Atmos. 8, 611–621 (1974).

  4. 4

    Peirson, D. H., Cawse, P. A. & Cambray, R. S. Nature 251, 675–679 (1974).

  5. 5

    Wallace, G. T. Jr & Duce, R. A. Mar. Chem. 3, 157–81 (1975).

  6. 6

    Duce, R. A. et al. in Marine Pollutant Transfer (eds Windom, H. L. & Duce, R. A.) 77–119 (Lexington, 1976).

  7. 7

    Buat-Menard, P. & Chesselet, R. Earth planet. Sci. Lett. 42, 399–411 (1979).

  8. 8

    Martell, E. A. & Moore, H. E. J. Rech. Atmos. 8, 903–910 (1974).

  9. 9

    Turekian, K. K., Kharkar, D. P. & Thomson, J. J. Rech. Atmos. 8, 639–646 (1974).

  10. 10

    Lambert, G., Sanak, J. & Ardouin, B. J. Rech. Atmos. 8, 647–648 (1974).

  11. 11

    Moore, H. E., Poet, S. E. & Martell, E. A. J. geophys. Res. 79, 5019–5024 (1974).

  12. 12

    Garrett, W. D. Limnol. Oceanogr. 10, 602–605 (1965).

  13. 13

    Elzerman, A. W. & Armstrong, D. E. Limnol. Oceanogr. 24, 133–144 (1979).

  14. 14

    Szekielda, K. H., Kupferman, S. L., Klemas, V. & Polis, D. F. J. geophys. Res. 77, 5278–5282 (1972).

  15. 15

    Eisenreich, S. J., Elzerman, A. W. & Armstrong, D. E. Envir. Sci. Technol. 12, 413–417 (1978).

  16. 16

    Bacon, M. P. thesis, Massachusetts Institute of Technology (1976).

  17. 17

    Adam, N. K. Proc. R. Soc. B 122, 134–149 (1937).

  18. 18

    Benninger, L. K. thesis, Yale Univ. (1976).

  19. 19

    Schell, W. R. Geochim. cosmochim. Acta 41, 1019–1031 (1977).

  20. 20

    Nozaki, Y., Thomson, J. & Turekian, K. K. Earth planet. Sci. Lett. 32, 304–312 (1976).

  21. 21

    Bacon, M. P. Met. Forsch.-Ergebn. A 19, 24–36 (1977).

  22. 22

    Bacon, M. P., Spencer, D. W. & Brewer, P. G. in Natural Radiation Environment Vol. 3 (eds Lowder, W. M. et al.) (in the press).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.