Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanism of action of dietary fibre in the human colon

Abstract

Fibre, more than any other dietary component, affects human large bowel function, causing an increase in stool output, dilution of colonic contents, a faster rate of passage through the gut and changes in the colonic metabolism of minerals, nitrogen and bile acids1–6. (Fibre here refers to ‘dietary fibre’, which comprises plant cell wall polysaccharides and lignin, and not to ‘crude fibre’.) It is thought that these changes are brought about by fibre passing through the gut undigested and holding water within its cellular structure7,8. Although the amount of water taken up in vitro varies for different types of fibre8–10, this does not correlate in the expected way with the effects these materials have on colonic function9. This is because fibre is extensively degraded in the gut2,11, probably by the colonic microflora12,13. Using a newly developed method modified from ruminant nutrition for isolating bacteria, we have shown that the main component of human faeces is bacteria14. We show here that the way in which two contrasting types of dietary fibre act in the colon depends on the extent to which they are digested. Cabbage fibre, which is extensively broken down, provides a readily usable substrate for the stimulation of microbial growth, whereas wheat fibre remains largely undigested and retains water in the gut lumen.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Cummings, J. H. et al. Lancet i, 5–8 (1978).

    Article  Google Scholar 

  2. 2

    Southgate, D. A. T. et al. Metabolism 25, 1129–1135 (1976).

    CAS  Article  Google Scholar 

  3. 3

    Cummings, J. H., Hill, M. J., Jenkins, D. J. A., Pearson, J. R. & Wiggins, H. S. Am. J. clin. Nutr. 29, 1468–1473 (1976).

    CAS  Article  Google Scholar 

  4. 4

    Cummings, J. H. et al. Am. J. din. Nutr. 32, 2086–2093 (1979).

    CAS  Article  Google Scholar 

  5. 5

    Cummings, J. H., Hill, M. J., Bone, E. S., Branch, W. J. & Jenkins, D. J. A. Am. J. clin. Nutr. 32, 2094–2101 (1979).

    CAS  Article  Google Scholar 

  6. 6

    Eastwood, M. A., Kirkpatrick, J. R., Mitchell, W. D., Bone, A. & Hamilton, T. Br. med. J. IV, 392–394 (1973).

    Article  Google Scholar 

  7. 7

    Eastwood, M. A. & Mitchell, W. D. in Fiber in Human Nutrition (eds Spiller, G. A. & Amen, R. J.) 109–130 (Plenum, New York, 1976).

    Google Scholar 

  8. 8

    McConnell, A. A., Eastwood, M. A. & Mitchell, W. D. J. Sci. Fd Agric. 25, 1457–1464 (1974).

    CAS  Article  Google Scholar 

  9. 9

    Stephen, A. M. & Cummings, J. H. Gut 20, 722–729 (1979).

    CAS  Article  Google Scholar 

  10. 10

    Heller, S. N. thesis, Cornell Univ. (1978).

  11. 11

    Cummings, J. H. et al. Br. J. Nutr. 41, 477–485 (1979).

    CAS  Article  Google Scholar 

  12. 12

    Bryant, M. P. Am. J. clin. Nutr. 31, S113–S115 (1978).

    CAS  Article  Google Scholar 

  13. 13

    Salyers, A. A., Vercellotti, J. R., West, S. E. H. & Wilkins, T. D. Appl. envir. Microbiol. 33, 319–322 (1977).

    CAS  Google Scholar 

  14. 14

    Stephen, A. M. & Cummings, J. H. J. med. Microbiol. (in the press).

  15. 15

    Luria, S. E. in The Bacteria (eds Gunsalus, I. C. & Stanier, R. Y.) 1–34 (Academic, New York, 1960).

    Google Scholar 

  16. 16

    Dintzis, F. R., McBrien, J. B., Baker, F. L. & Inglett, C. E. in Dietary Fibers: Chemistry and Nutrition (eds Inglett, G. E. & Falkehag, S. I.) 157–171 (Academic, New York, 1979).

    Google Scholar 

  17. 17

    Williams, A. E., Eastwood, M. A. & Cregeen, R. Scanning Electron Microsc. II, 707–712 (1978).

    Google Scholar 

  18. 18

    Stephen, A. M. & Cummings, J. H. Proc. Nutr. Soc. 38, 141A (1979).

    CAS  PubMed  Google Scholar 

  19. 19

    Southgate, D. A. T. & Durnin, J. V. G. A. Br. J. Nutr. 24, 517–535 (1970).

    CAS  Article  Google Scholar 

  20. 20

    Kay, R. M. & Truswell, A. S. Br. J. Nutr. 37, 227–235 (1977).

    CAS  Article  Google Scholar 

  21. 21

    Cummings, J. H. Topics Gastroenterol. 6, 49–62 (1978).

    Google Scholar 

  22. 22

    Kritchevsky, D. & Story, J. A. J. Nutr. 104, 458–462 (1974).

    CAS  Article  Google Scholar 

  23. 23

    Eastwood, M. A., Anderson, R., Mitchell, W. D., Robertson, J. & Pocock, S. J. Nutr. 106, 1429–1432 (1976).

    CAS  Article  Google Scholar 

  24. 24

    Burkitt, D. P., Walker, A. R. P. & Painter, N. S. Lancet ii, 1408–1412 (1972).

    Article  Google Scholar 

  25. 25

    Cummings, J. H., Jenkins, D. J. A. & Wiggins, H. S. Gut 17, 210–218 (1976).

    CAS  Article  Google Scholar 

  26. 26

    Goering, H. K. & Van Soest, P. J. Agric. Handb. Forest Serv. 379, 1–20 (1970).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stephen, A., Cummings, J. Mechanism of action of dietary fibre in the human colon. Nature 284, 283–284 (1980). https://doi.org/10.1038/284283a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing