Letter | Published:

Inherited defect in a Na+, K+ -co-transport system in erythrocytes from essential hypertensive patients

Abstract

The Na+ and K+ electrochemical gradients across cell membranes are believed to be maintained by the action of a Na+, K+-pump1–3. In human erythrocytes this pump exchanges internal Na+ for external K+ in approximately a 1.5 ratio4,5. Thus, when Na+-loaded/K+-depleted erythrocytes are incubated in physiological conditions they tend to recover their original low Na+/high K+ content. Surprisingly, in erythrocytes from healthy donors the net Na+ extrusion/K+ influx ratio exceeds the 1.5 ratio predicted for Na+, K+-pump-mediated fluxes whereas it is similar to this value in erythrocytes from essential hypertensive patients and some of their descendants6. We now report that this difference is due to the presence of a Na+, K+-co-transport system in normal erythrocytes which extrudes both internal Na+ and K+ and is functionally deficient in erythrocytes of essential hypertensive patients and some of their descendants. No difference in passive Na+ permeability could be detected between normotensive and hypertensive subjects.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Glynn, I. & Karlish, S. A. Rev. Physiol. 37, 13–55 (1975).

  2. 2

    Sarkadi, B. & Tosteson, D. in Membrane Transport in Biology Vol. 2 (eds Giebisch, G., Tosteson, D. & Ussing, H) 117–160 (Springer, Heidelberg, 1979).

  3. 3

    Garrahan, P. & Garay, R. Curr. Topics Membrane Transport 8, 29–97 (1976).

  4. 4

    Post, R. & Jolly, P. Biochim. biophys. Acta 25, 118–128 (1957).

  5. 5

    Whittam, R. & Ager, N. Biochem. J. 97, 214–227 (1965).

  6. 6

    Garay, R. P. & Meyer, P. Lancet i, 349–353 (1979).

  7. 7

    Lew, V. & Beaugé, L. in Membrane Transport in Biology (eds Giebisch, G., Tosteson, D. & Ussing, H.) 81–115 (Springer, Heidelberg, 1979).

  8. 8

    Wambach, G., Helber, A., Bönner, G. & Hummerich, W. Klin. Wochenschr. 57, 169–172 (1979).

  9. 9

    Zachowski, A., Lelièvre, L., Aubry, J., Charlemagne, D. & Paraf, A. Proc. natn. Acad. Sci. U.S.A. 79, 633–637 (1977).

  10. 10

    Glynn, I. J. Physiol., Lond. 136, 148–173 (1957).

  11. 11

    Hoffman, J. & Kregenow, F. Ann. N.Y. Acad. Sci. 137, 566–576 (1966).

  12. 12

    Sachs, J. J. gen. Physiol. 57, 259–282 (1971).

  13. 13

    Beaugé, L. & Ortiz, O. J. Membrane Biol. 13, 165–184 (1973).

  14. 14

    McManus, T. & Schmidt, W. in Membrane Transport Processes Vol. 1 (ed. Hoffman, J.) 79–106 (Raven, 1978).

  15. 15

    Beaugé, L. & Adragna, N. J. gen. Physiol. 57, 576–592 (1971).

  16. 16

    Wiley, J. & Cooper, R. J. clin. Invest. 53, 745–755 (1974).

  17. 17

    Wessels, F. & Losse, M. Z. Kreislaufforsch. 56, 374–380 (1967).

  18. 18

    Postnov, Y., Orlov, S., Shevchenko, A. & Adler, A. Pflügers Arch. ges. Physiol. 371, 263–269 (1977).

  19. 19

    Canessa, M., Adragna, N., Connolly, T., Solomon, H. & Tosteson, D. Clin. Res. 27, 511 A (1979).

  20. 20

    Blaustein, M. Am. J. Physiol. 232, c165–c173 (1977).

  21. 21

    De Champlain, J., Krakoff, L. & Axelrod, J. Circulation Res. 23, 479–491 (1968).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.