Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1

Abstract

Small GTPases act as molecular switches in intracellular signal-transduction pathways1. In the case of the Ras family of GTPases, one of their most important roles is as regulators of cell proliferation, and the mitogenic response to a variety of growth factors and oncogenes can be blocked by inhibiting Ras function2,3. But in certain situations, activation of Ras signalling pathways arrests the cell cycle rather than causing cell proliferation4,5,6. Extracellular signals may trigger different cellular responses by activating Ras-dependent signalling pathways to varying degrees7,8,9. Other signalling pathways could also influence the consequences of Ras signalling. Here we show that when signalling through the Ras-related GTPase Rho is inhibited, constitutively active Ras induces the cyclin-dependent-kinase inhibitor p21Waf1/Cip1 and entry into the DNA-synthesis phase of the cell cycle is blocked. When Rho is active, induction of p21Waf1/Cip1 by Ras is suppressed and Ras induces DNA synthesis. Cells that lack p21Waf1/Cip1 do not require Rho signalling for the induction of DNA synthesis by activated Ras, indicating that, once Ras has become activated, the primary requirement for Rho signalling is the suppression of p21Waf1/Cip1 induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ras induces p21Waf1/Cip1 and fails to induce DNA synthesis in serum-starved Swiss 3T3 cells.
Figure 2: Inhibition of Rho leads to induction of high levels of p21Waf1/Cip1 by Ras.
Figure 3: Suppression of p21Waf1/Cip1 induction is the major requirement for Rho in Ras-induced DNA synthesis.
Figure 4: Rho signalling suppresses transcription from the p21Waf1/Cip1 promoter.

Similar content being viewed by others

References

  1. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Mulcahy, L. S., Smith, M. R. & Stacey, D. W. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature 313, 241–243 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Smith, M. R., DeGubicus, S. J. & Stacey, D. W. Requirement for c-ras proteins during viral oncogene transformation. Nature 320, 540–543 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Kohl, N. E. & Ruley, H. E. Role of c-myc in the transformation of REF52 cells by viral and cellular oncogenes. Oncogene 2, 41–48 (1987).

    CAS  PubMed  Google Scholar 

  5. Ridley, A. J., Paterson, H. F., Noble, M. & Land, H. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J. 7, 1635–1645 (1988).

    Article  CAS  Google Scholar 

  6. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumualtion of p53 and p16INK41. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  7. Marshall, C. J. Specificity of receptor tyrosine kinase signalling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–195 (1995).

    Article  CAS  Google Scholar 

  8. Sewing, A., Wiseman, B., Lloyd, A. C. & Land, H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5588–5597 (1997).

    Article  CAS  Google Scholar 

  9. Woods, D. et al. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5598–5611 (1997).

    Article  CAS  Google Scholar 

  10. Stacey, D. W. & Kung, H.-F. Transformation of NIH 3T3 cells by microinjeciton of Ha-ras p21 protein. Nature 310, 508–511 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Lloyd, A. et al. Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev. 11, 663–677 (1997).

    Article  CAS  Google Scholar 

  12. Pumiglia, K. M. & Decker, S. J. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc. Natl Acad. Sci. USA 94, 448–452 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Alessi, D. R. et al. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J. 13, 1610–1619 (1994).

    Article  CAS  Google Scholar 

  14. Takuwa, N. & Takuwa, Y. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts. Mol. Cell. Biol. 17, 5348–5358 (1997).

    Article  CAS  Google Scholar 

  15. Kawada, M. et al. Induction of p27Kip1 degradation and anchroage independence by Ras through the MAP kinase signalling pathway. Oncogene 15, 629–637 (1997).

    Article  CAS  Google Scholar 

  16. Olson, M. F., Ashworth, A. & Hall, A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269, 1270–1272 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M. S. & Der, C. J. Activation of Rac1, Rhoa and mitogen activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15, 6443–6453 (1995).

    Article  CAS  Google Scholar 

  18. Qiu, R. G., Chen, J., McCormick, F. & Symons, M. Arole for Rho in Ras transformation. Proc. Natl Acad. Sci. USA 92, 11781–11785 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Prendergast, G. C. et al. Critical role of Rho in cell transformation by oncogenic Ras. Oncogene 10, 2289–2296 (1995).

    CAS  PubMed  Google Scholar 

  20. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response ot growth factors. Cell 70, 389–399 (1992).

    Article  CAS  Google Scholar 

  21. Aktories, K., Mohr, C. & Koch, G. Clostridium botulinum C3 ADP-ribosyltransferase. Curr. Top. Microbiol. Immunol. 175, 115–131 (1992).

    CAS  PubMed  Google Scholar 

  22. Flatau, G. et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387, 729–733 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Schmidt, G. et al. Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotising factor-1. Nature 387, 725–729 (1997).

    Article  ADS  CAS  Google Scholar 

  24. El-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  25. Liu, Y., Martindale, J. L., Gorospe, M. & Holbrook, N. J. Regulation of p21WAF1/CIP1 expression through mitogen-activated protein kinase signaling pathway. Cancer Res. 56, 31–35 (1996).

    CAS  PubMed  Google Scholar 

  26. Zeng, Y. X. & el-Deiry, D. W. Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 12, 1557–1564 (1996).

    CAS  PubMed  Google Scholar 

  27. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  Google Scholar 

  28. Fredersdorf, S., Milne, A. W., Hall, P. A. & Lu, X. Characterization of a panel of novel anti-p21Waf1/Cip1 monoclonal antibodies and immunochemical analysis of p21Waf1/Cip1 expression in normal human tissues. Am. J. Pathol. 148, 825–835 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Leevers, S. J. & Marshall, C. J. Activation of extracellular signal-regulated kinase, ERK2, by p21 ras oncoprotein. EMBO J. 11, 569–574 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. Lu for the SX-118 anti-p21Waf1/Cip1 monoclonal antibody and the p21Waf1/Cip1 promoter/luciferase construct; P. Boquet for purified CNF1; S. Hooper for recombinant active MEK1; T. Jacks and G. D'Abaco for mouse embryo fibroblasts; A. Hall for the pGEX-2T L63RhoA plasmid; and L. Feig for the pGEX-2T C3 toxin plasmid. M.F.O. is an Institute of Cancer Research Fellow, and C.J.M. is a Gibb Fellow of the Cancer Research Campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, M., Paterson, H. & Marshall, C. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 394, 295–299 (1998). https://doi.org/10.1038/28425

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28425

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing