Letter | Published:

The relationship between coding sequences and function in haemoglobin

Abstract

Gilbert has suggested that the presence of intervening sequences in DNA, called introns, can speed evolution by allowing novel proteins to be constructed from the pieces of existing ones1. This hypothesis further suggests that the coding sequences, called exons, correspond to functional parts of the protein. The most striking example so far is the case of the immunoglobulin γ heavy chain, where the four polypeptide sequences corresponding to the four coding sequences form structurally and functionally distinct parts of the molecule1,2. The relation between the three coding sequences of the β globin gene and structure or function is not as obvious, but the central coding sequence does code for the part of the globin chain which forms the haem crevice3,4. To further test the idea that coding sequences correspond to functional units of proteins we consider the relationship between the coding sequences of α and β globin genes and the corresponding parts of the complete, tetrameric haemoglobin molecule.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Gilbert, W. Nature 271, 501 (1978).

  2. 2

    Sakano, H. et al. Nature 277, 627 (1979).

  3. 3

    Blake, C. C. F. Nature 277, 598 (1979).

  4. 4

    Gilbert, W. in Eukaryotic Gene Regulation, ICN-UCLA Symposium on Molecular and Cellular Biology Vol. 14 (eds Axel, R., Maniatis, T. & Fox, C. F.) 1–10 (Academic, New York, 1979).

  5. 5

    Monod, J., Wyman, J. & Changeux, J. P. J. molec. Biol. 12, 88 (1965).

  6. 6

    Perutz, M. F. Nature 228, 726 (1970).

  7. 7

    Shulman, R. G., Hopfield, J. J. & Ogawa, S. Q. Rev. Biophys. 8, 325 (1975).

  8. 8

    Szabo, A. & Karplus, M. J. molec. Biol. 72, 163 (1972).

  9. 9

    Edelstein, S. J. A. Rev. Biochem. 44, 209 (1976).

  10. 10

    Perutz, M. F. A. Rev. Biochem. 48, 327 (1979).

  11. 11

    Baldwin, J. & Chothia, C. J. molec. Biol. 129, 175 (1979).

  12. 12

    Perutz, M. F. & Lehmann, H. Nature 219, 902 (1968).

  13. 13

    Greer, J. Cold Spring Harb. Symp. quant. Biol. 36, 315 (1971).

  14. 14

    Fermi, G. J. molec. Biol. 97, 237 (1975).

  15. 15

    Goodman, M., Moore, G. W. & Matsuda, G. Nature 253, 603 (1975).

  16. 16

    Arnone, A. Nature 237, 146 (1972).

  17. 17

    Matthew, J. B., Hanania, G. I. H. & Gurd, F. R. N. Biochemistry 18, 1928 (1979).

  18. 18

    List of haemoglobin variants Hemoglobin 1, 601 (1977).

  19. 19

    List of haemoglobin variants Hemoglobin 1, 707 (1977).

  20. 20

    Gelin, B. & Karplus, M. Proc. natn. Acad. Sci. U.S.A. 74, 801 (1977).

  21. 21

    Riggs, A. Fedn Proc. 35, 2115 (1976).

  22. 22

    Leder, A. et al. Proc. natn. Acad. Sci. U.S.A. 75, 6187 (1978).

  23. 23

    Nishioka, Y. & Leder, P. Cell 18, 875 (1979).

  24. 24

    Van den Berg, J. et al. Nature 276, 37 (1978).

  25. 25

    Konkel, D. A., Tilghmann, S. M. & Leder, P. Cell 15, 1125 (1978).

  26. 26

    Li, S. L. & Riggs, A. J. biol Chem. 245, 6149 (1970).

  27. 27

    Love, W. E. et al. Cold Spring Harb. Symp. quant. Biol. 36, 349 (1971).

  28. 28

    Bucci, C. F. & Bucci, E. Biochemistry 14, 4451 (1975).

  29. 29

    Winslow, R. M. & Anderson, W. F. The Metabolic Basis of Inherited Disease (eds Stanbury, J. B., Wyngaarden, J. B. & Frederickson, D. S.) 1465–1507 (McGraw-Hill, New York, 1978).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.