Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Host range of Agrobacterium tumefaciens is determined by the Ti plasmid

Abstract

The plant pathogen Agrobacterium tumefaciens can induce crown gall tumours in a wide range of dicotyledonous plants. To be virulent an Agrobacterium strain must contain a tumour-inducing (Ti) plasmid1,2. Most Ti plasmids fall into one of two groups, based on whether they code for enzymes for octopine or nopaline utilisation3,4. Tumours induced by strains carrying octopine or nopaline type Tiplasmids generally synthesise octopine or nopaline respectively3,4. Normal plant tissues do not synthesise these unusual amino acid derivatives5,6. Chilton et al.7 have analysed total DNA isolated from a cloned sterile tobacco crown gall callus and found sequences (T-DNA) complementary to 5% of the Ti plasmid that are not found in normal tobacco callus. Thus, Agrobacterium can induce and maintain tumours by introducing genetic information stably into plant cells. It is evident that plasmid sequences have a central role in Agrobacterium virulence. Based on metabolic and physiological properties, most isolates of A. tumefaciens can be classified as either biotype 1 or biotype 2 organisms8,9. They have a broad host range, inducing tumours on most dicotyledonous plants. Recently, however, strains isolated in Greece and Russia from grapevine tumours have been shown to have a limited host range10,11. These organisms are also unique in that they do not fit into either of the previously described biotypes and have therefore been assigned to a new class, biotype 3 (refs 11, 12). We felt that these limited host range organisms could provide a system to study determinants of host range: if host range is determined solely by plasmid genes, the transfer of the Ti plasmid from a limited host range biotype 3 organism (assuming the biotype 3 organism had a Ti plasmid) to a biotype 1 organism that had been cured of its Ti plasmid, should yield a transformant of limited host range. The transformant should have a wide host range if this is a chromosomally borne trait. In this report we present data suggesting that the Ti plasmid has a major role in determining host range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. VanLaebeke, N. et al. Nature 252, 169–170 (1974).

    Article  ADS  Google Scholar 

  2. Watson, B., Currier, T. C., Gordon, M. P., Chilton, M.-D. & Nester, E. W. J. Bact. 123, 255–264 (1975).

    CAS  Google Scholar 

  3. Bomhoff, G. H. et al. Molec. gen. Genet. 145, 177–181 (1976).

    Article  CAS  Google Scholar 

  4. Montoya, A. L., Chilton, M.-D., Gordon, M. P., Sciaky, D. & Nester, E. W. J. Bact. 129, 101–107 (1977).

    CAS  Google Scholar 

  5. Kemp, J. D. Biochem. biophys. Res. Commun. 69, 816–822 (1976).

    Article  CAS  Google Scholar 

  6. Bomhoff, G. H. thesis, Univ. Leiden (1974).

  7. Chilton, M.-D. et al. Cell 11, 263–271 (1977).

    Article  CAS  Google Scholar 

  8. Keane, P. F., Kerr, A. & New, P. B. Aust. J. biol. Sci. 23, 585–595 (1970).

    Article  Google Scholar 

  9. Kersters, K., DeLey, J., Sneath, P. H. A. & Sackin, M. J. gen. Microbiol. 78, 227–239 (1973).

    Article  Google Scholar 

  10. Panagopoulos, C. G. & Psallidas, P. G. J. appl. Bact. 36, 233–240 (1973).

    Article  CAS  Google Scholar 

  11. Panagopoulos, C. G., Psallidas, P. G. & Alivizatos, A. S. Proc. 4th. Int. Conf. PI. Path. Bact. Angers (1978).

  12. Kerr, A. & Panagopoulos, C.G. Phytopath. Z. 90, 172–179 (1977).

    Article  Google Scholar 

  13. Holsters, M. et al. Molec. gen. Genet. 163, 181–187 (1978).

    Article  CAS  Google Scholar 

  14. Casse, F., Boucher, C., Julliot, J. S., Michel, M. & Dénarié, J. J. gen. Microbiol. (in the press).

  15. Schroth, M. N., Thompson, J. P. & Hildebrand, D. C. Phytopathology 55, 645–647 (1965).

    Google Scholar 

  16. Sciaky, D., Montoya, A. L. & Chilton, M.-D. Plasmid 1, 238–253 (1978).

    Article  CAS  Google Scholar 

  17. Lippincott, B. B. & Lippincott, J. A. J. Bact. 97, 620–628 (1969).

    CAS  Google Scholar 

  18. Lippincott, B. B., Whateley, M. H. & Lippincott, J. A. Pl. Physiol. 59, 388–390 (1977).

    Article  CAS  Google Scholar 

  19. Matthysse, A. G., Wyman, P. M. & Holmes, K. V. Infect. Immun. 22, 512–522 (1978).

    Google Scholar 

  20. Smith, V. A. & Hindley, J. Nature 276, 498–500 (1978).

    Article  ADS  Google Scholar 

  21. Smith, H. W. & Linggood, M. A. J. med. Microbiol. 5, 243–250 (1972).

    Article  CAS  Google Scholar 

  22. Smith, H. W. & Linggood, M. J. med. Microbiol. 4, 467–486 (1971).

    Article  CAS  Google Scholar 

  23. Loper, J. E. & Kado, C. J. Bact. 139, 591–596 (1979).

    CAS  PubMed  Google Scholar 

  24. Currier, T. C. & Nester, E. W. Analyt. Biochem. 66, 431–441 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomashow, M., Panagopoulos, C., Gordon, M. et al. Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature 283, 794–796 (1980). https://doi.org/10.1038/283794a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283794a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing