Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey

Abstract

In the local Universe, most galaxies are dominated by stars, with less than ten per cent of their visible mass in the form of gas. Determining when most of these stars formed is one of the central issues of observational cosmology. Optical and ultraviolet observations of high-redshift galaxies (particularly those in the Hubble Deep Field) have been interpreted as indicating that the peak of star formation occurred between redshifts of 1 and 1.5. But it is known that star formation takes place in dense clouds, and is often hidden at optical wavelengths because of extinction by dust in the clouds. Here we report a deep submillimetre-wavelength survey of the Hubble Deep Field; these wavelengths trace directly the emission from dust that has been warmed by massive star-formation activity. The combined radiation of the five most significant detections accounts for 30–50 per cent of the previously unresolved background emission in this area. Four of these sources appear to be galaxies in the redshift range 2< z < 4, which, assuming these objects have properties comparable to local dust-enshrouded starburst galaxies, implies a star-formation rate during that period about a factor of five higher than that inferred from the optical and ultraviolet observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 850-μm SCUBA image of the HDF.
Figure 2: A comparison of observed and predicted number counts of submillimetre sources in the HDF as a function of flux density.
Figure 3: An estimation of redshift using the measured flux density ratio between wavelengths of 450 and 850 μm (top panel) and 1,350 and 850 μm (bottom panel).
Figure 4: Optical associations for the brightest five submillimetre sources in the HDF.
Figure 5: The observed optical–radio spectral energy distribution of HDF850.1.
Figure 6: The global star-formation history of the Universe.

Similar content being viewed by others

References

  1. Lilly, S. J., Le Févre, O., Hammer, F. & Crampton, D. The Canada-France redshift survey: the luminosity density and star formation history of the universe to z 1. Astrophys. J. 460, L1–L4 (1996).

    Article  ADS  Google Scholar 

  2. Steidel, C. C. & Hamilton, D. Deep imaging of high redshift QSO fields below the Lyman limit: I. The field of Q0000-263 and galaxies at z = 3.4. Astron. J. 104, 941–949 (1992).

    Article  ADS  Google Scholar 

  3. Madau, P. et al. High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z 4. Mon. Not. R. Astron. Soc. 283, 1388–1404 (1996).

    Article  ADS  Google Scholar 

  4. Madau, P. The evolution of luminous matter in the universe.In The Hubble Deep Field(eds Livio, M. et al.) (STScI Symp. Ser., in the press)

  5. Connolly, A. J., Szalay, A. S., Dickinson, M., SubbaRao, M. V. & Brunner, R. J. The evolution of the global starformation history as measured from the Hubble Deep Field. Astrophys. J. 486, L11–L14 (1997).

    Article  ADS  Google Scholar 

  6. Fall, S. M., Charlot, S. & Pei, Y. C. Cosmic emissivity and background intensity from damped Lyman-alpha galaxies. Astrophys. J. 464, L43–L46 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Franceschini, A., Mazzei, P., De Zotti, G. & Danese, L. Luminosity evolution and dust effects in distant galaxies: implications for the observatiblity of the early evolutionary phases. Astrophys. J. 427, 140–154 (1994).

    Article  ADS  Google Scholar 

  8. Pettini, M., Smith, L. J., King, D. L. & Hunstead, R. W. The metallicity of high-redshift galaxies: the abundance of zinc in 34 damped Ly-α systems from z = 0.7 to 3.4. Astrophys. J. 486, 665–680 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Pettini, M. et al. The spectra of star forming galaxies at high redshift.In The Ultraviolet Universe at Low and High Redshift(ed. Waller, W.) (AIP Press, Woodbury, New York, in the press).

  10. Heckman, T. M., Robert, C., Leitherer, C., Garnett, D. R. & van der Rydt, F. The ultraviolet spectroscopic properties of local starbursts: implications at high-redshift. Astrophys. J.(submitted); also as preprint astro-ph/9803185 at 〈http://xxx.lanl.gov〉 ((1998)).

  11. Meurer, G. R., Heckman, T. M., Lehnert, M. D., Leitherer, C. & Lowenthal, J. The panchromatic starburst intensity limit at low and high redshift. Astron. J. 114, 54–68 (1997).

    Article  ADS  Google Scholar 

  12. Franceshini, A., De Zotti, G., Toffolatti, L., Mazzei, P. & Danese, L. Galaxy counts and contributions to the background radiation from 1 micron to 1000 microns. Astron. Astrophys. Suppl. Ser. 89, 285–310 (1991).

    ADS  Google Scholar 

  13. Blain, A. W. & Longair, M. S. Submillimetre cosmology. Mon. Not. R. Astron. Soc. 264, 509–521 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Hughes, D. H., Dunlop, J. S. & Rawlings, S. High-redshift radio galaxies and quasars at sub-millimetre wavelengths: assessing their evolutionary status. Mon. Not. R. Astron. Soc. 289, 766–782 (1997).

    Article  ADS  Google Scholar 

  15. Rowan-Robinson, M. et al. The ultraviolet-to-radio continuum of the ultraluminous galaxy IRAS F10214+4725. Mon. Not. R. Astron. Soc. 261, 513–521 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Barvainis, R., Antonucci, R., Hurt, T., Coleman, P. & Reuter, H.-P. The broadband spectral energy distributions of the Cloverleaf quasar and IRAS F10214+4724. Astrophys. J. 451, L9–L12 (1995).

    Article  ADS  Google Scholar 

  17. Dunlop, J. S., Hughes, D. H., Rawlings, S., Eales, S. A. & Ward, M. J. Detection of a large mass of dust in a radio galaxy at redshift z = 3.8. Nature 370, 347–349 (1994).

    Article  ADS  Google Scholar 

  18. Ivison, R. J. et al. Dust, gas, and evolutionary status of the radio galaxy 8C 1435+635 at z = 4.25. Astrophys. J. 494, 211–217 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Isaak, K. G., McMahon, R. G., Hills, R. E. & Withington, S. Observations of high redshift objects at submillimetre wavelengths. Mon. Not. R. Astron. Soc. 269, L28–L31 (1994).

    Article  ADS  Google Scholar 

  20. Omont, A. et al. Continuum millimetre observations of high-redshift radio-quiet QSOs-II. Five new detections at z &gt; 4. Astron. Astrophys. 315, 1–10 (1996).

    ADS  Google Scholar 

  21. Holland, W. S. et al. in Advanced Technology MMW, Radio, and TeraHertz Telescopes Proc. SPIE. 3357(in the press).

  22. Smail, I., Ivison, R. J. & Blain, A. W. Adeep sub-millimeter survey of lensing clusters: a new window on galaxy formation and evolution. Astrophys. J. 490, L5–L8 (1997).

    Article  ADS  Google Scholar 

  23. Saunders, W. et al. The 60-micron and far-infrared luminosity functions of IRAS galaxies. Mon. Not. R. Astron. Soc. 242, 318–337 (1990).

    Article  ADS  Google Scholar 

  24. Lawrence, A. et al. The QDOT all-sky IRAS galaxy redshift survey. Mon. Not. R. Astron. Soc.(submitted).

  25. Oliver, S. J. et al. Observations of the Hubble Deep Field with the Infrared Space Observatory-III. Source counts and P(D) analysis. Mon. Not. R. Astron. Soc. 289, 471–481 (1997).

    Article  ADS  Google Scholar 

  26. Rowan-Robinson, M. et al. Observations of the Hubble Deep Field with the Infrared Space Observatory-V. Spectrla energy distributions, starburst models and star formation history. Mon. Not. R. Astron. Soc. 289, 490–496 (1997).

    Article  ADS  Google Scholar 

  27. Blain, A. W. & Longair, M. S. Observing strategies for blank-field surveys in the submillimetre waveband. Mon. Not. R. Astron. Soc. 279, 847–858 (1996).

    Article  ADS  Google Scholar 

  28. Pearson, C. & Rowan-Robinson, M. Starburst galaxy contributions to extragalactic source counts. Mon. Not. R. Astron. Soc. 283, 174–192 (1996).

    Article  ADS  Google Scholar 

  29. Hughes, D. H. & Dunlop, J. S. Continuum observations of the high-redshift universe at sub-millimetre wavelengths.In Highly Redshifted Radio Lines(eds Carilli, C. et al.) (ASP Conf. Ser., ASP, San Francisco, in the press).

  30. Williams, R. E. et al. The Hubble Deep Field: observations, data reduction, and galaxy photometry. Astron. J. 112, 1335–1389 (1996).

    Article  ADS  Google Scholar 

  31. Bond, J. R. & Efstathiou, G. The statistics of cosmic background radiation fluctuations. Mon. Not. R. Astron. Soc. 226, 655–687 (1987).

    Article  ADS  Google Scholar 

  32. Condon, J. J. Confusion and flux-density error distributions. Astrophys. J. 188, 279–286 (1974).

    Article  ADS  Google Scholar 

  33. Steidel, C. C. et al. Alarge structure of galaxies at redshift z 3 and its cosmological implications. Astrophys. J.(in the press); also as preprint astro-ph/9708125 at 〈http://xxx.lanl.gov〉 ((1997)).

  34. Giavalisco, M. et al. The angular clustering of Lyman-break galaxies at redshift z = 3. Astrophys. J.(in the press); also as preprint astro-ph/9802318 at 〈http://xxx.lanl.gov〉 ((1998)).

  35. Puget, J. L. et al. Tentative detection of a cosmic far-infrared background with COBE. Astron. Astrophys. 308, L5–L8 (1996).

    ADS  Google Scholar 

  36. Fixen, D. J., Dwek, E., Mather, J. C., Bennett, C. L. & Shafer, R. A. The spectrum of the extra-galactic FIR background from the COBE IRAS observations.Preprint astro-ph/9803021 at 〈http://xxx.lanl.gov〉 ((1998)).

  37. Guiderdoni, B., Bouchet, F. R., Puget, J. L., Lagache, G. & Hivon, H. The optically dark side of galaxy formation. Nature 390, 257–259 (1998).

    Article  ADS  Google Scholar 

  38. Rowan-Robinson, M. & Efstathiou, A. Multigrain dust cloud models of starburst and Seyfert galaxies. Mon. Not. R. Astron. Soc. 263, 567–680 (1993).

    Google Scholar 

  39. Dudley, C. C. & Wynn-Williams, C. G. The deep silicate absorption feature in IRAS 08572+3915 and other infrared galaxies. Astrophys. J. 488, 720–729 (1997).

    Article  ADS  CAS  Google Scholar 

  40. Ivison, R. J. et al. Ahyperluminous galaxy at z = 2.8 found in a deep submillimetre survey. Mon. Not. R. Astron. Soc.(in the press); also as preprint astro-ph/9712161 at 〈http://xxx.lanl.gov〉 ((1997)).

  41. Sopp, H. M. & Alexander, P. Acomposite plot of far-infrared versus radio luminosity, and the origin of far-infrared luminosity in quasars. Mon. Not. R. Astron. Soc. 251, 14P–16P (1991).

    Article  ADS  Google Scholar 

  42. Richards, E. A., Kellermann, K. I., Fomalont, E. B., Windhorst, R. A. & Partridge, R. B. Radio emission from galaxies in the Hubble Deep Field. Astron. J.(submitted); also as preprint astro-ph/9803343 at 〈http://xxx.lanl.gov〉 ((1998)).

  43. Mobasher, B., Rowan-Robinson, M., Georgakakis, A. & Eaton, N. The nature of the faint galaxies in the Hubble Deep Field. Mon. Not. R. Astron. Soc. 282, L7–14 (1996).

    Article  ADS  Google Scholar 

  44. Browne, I. W. A. & Cohen, A. M. Quasars near bright galaxies. Mon. Not. R. Astron. Soc. 182, 181–187 (1978).

    Article  ADS  Google Scholar 

  45. Zepf, S. E., Moustakas, L. A. & Davis, M. Keck spectroscopy of objects with lens-like morphologies in the Hubble Deep Field. Astrophys. J. 474, L1–L5 (1997).

    Article  ADS  CAS  Google Scholar 

  46. Hogg, D. W., Blandford, R., Kundic, T., Fassnacht, C. D. & Malhotra, S. Acandidate gravitational lens in the Hubble Deep Field. Astrophys. J. 467, L73–L75 (1996).

    Article  ADS  Google Scholar 

  47. Sawicki, M. J., Lin, H. & Yee, H. K. C. Evolution of the galaxy population based on photometric redshifts in the Hubble Deep Field. Astron. J. 113, 1–12 (1997).

    Article  ADS  CAS  Google Scholar 

  48. Wang, Y., Bahcall, N. & Turner, E. L. Acatalogue of colour-based redshift estimates for z 4 galaxies in the Hubble Deep Field. Astron. J.(submitted); also as preprint astro-ph/9804195 at 〈http://xxx.lanl.gov〉 ((1998)).

  49. Oke, J. B. Absolute spectral energy distributions for white dwarfs. Astrophys. J. Suppl. 27, 21–35 (1974).

    Article  ADS  CAS  Google Scholar 

  50. Leech, K. J. High-luminosity IRAS galaxies-II. Optical spectroscopy, modelling of starburst regions and comparison with structure. Mon. Not. R. Astron. Soc. 240, 349–372 (1989).

    Article  ADS  CAS  Google Scholar 

  51. Dunlop, in Observational Cosmology with the New Radio Surveys(eds Bremer, M. N. et al.) 157–164 (Kluwer, Dordrecht, (1998)).

    Book  Google Scholar 

  52. Fall, S. M. & Pei, Y. C. Obscuration of quasars by dust in damped Lyman-alpha systems. Astrophys. J. 402, 479–492 (1993).

    Article  ADS  Google Scholar 

  53. Pei, Y. C. & Fall, S. M. Cosmic chemical evolution. Astrophys. J. 454, 69–76 (1995).

    Article  ADS  CAS  Google Scholar 

  54. Sandell, G. Secondary calibrators at submillimetre wavelengths. Mon. Not. R. Astron. Soc. 271, 75–80 (1994).

    Article  ADS  Google Scholar 

  55. Jenness, T. & Lightfoot, J. F. in Astronomical Data Analysis Software and Systems VII(eds Albrecht, R. et al.) 216–219 (ASP Conf. Ser. 145, ASP, San Francisco, (1998)).

    Google Scholar 

  56. Hook, R. N. & Fruchter, A. S. in Astronomical Data Analysis Software and Systems VI(eds Hunt, G. & Payne, H. E.) 147 (ASP Conf. Ser. 125, ASP, San Francisco, (1997)).

    Google Scholar 

  57. Gallego, J., Zamorano, J., Aragon-Salamanca, A., Rego, M. The current starformation rate of the local universe. Astrophys. J. 455, L1–L4 (1995).

    Article  ADS  CAS  Google Scholar 

  58. Eales, S. A. & Edmunds, M. G. The implications of large dust masses at high redshifts: a first look at galactic evolution in the submillimetre waveband. Mon. Not. R. Astron. Soc. 280, 1167–1180 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, D., Serjeant, S., Dunlop, J. et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 394, 241–247 (1998). https://doi.org/10.1038/28328

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28328

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing