Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Compact myelin exists in the absence of basic protein in the shiverer mutant mouse

Abstract

The myelin sheath is a multilamellar membrane system which surrounds axons in vertebrates and provides the electrical insulation necessary for saltatory nerve impulse conduction. Myelin forms from its cell of origin as a flattened, membrane-bound cytoplasmic process which wraps spirally around the axon; a periodic compact array of membrane pairs is produced from the wrappings as the cytoplasmic contents are extruded, and the external surfaces of membranes become apposed1,2. Neurological mutant mice which show myelin abnormalities are useful models for examining the formation, stability and breakdown of myelin. For example, the shiverer mouse carries an autosomal recessive mutation3 (shi)4 that results in severe myelin deficiency in the central nervous system (CNS)5,6, apparently due to a defect in myelin formation5,6. The small amount of myelin that does form in the CNS is generally not compacted at its cytoplasmic surfaces6, possibly due to the low level of basic protein in shiverer CNS tissue7. In the peripheral nervous system (PNS), in contrast, amounts of compact myelin seem to be normal6. The coarse tremor and convulsions that begin at about 2 weeks of age in the shiverer are presumably due to the severe CNS deficiency of myelin, as similar neurological signs are shown by other mutants with reduced CNS myelin8. Most studies on such mutants have concentrated on those regions of the nervous system which are grossly deficient in myelin5–10. In the other regions myelin seems by light microscopy to be normal. At the ultrastructural and molecular level, however, this myelin sometimes shows abnormalities11–14, and this has prompted us to examine intensively such myelin in several neurological mutants. For this we have used X-ray diffraction, electron microscopy and SDS-polyacrylamide gel electrophoresis (SDS-PAGE). We report here that, of the mutants we have examined so far, the shiverer mouse is unique in showing a striking alteration in myelin protein composition that does not significantly affect the gross morphology and lamellar organisation of the myelin sheath. Our results thus question the proposed role of basic proteins15–19 in myelin as ‘structural cement’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Geren, B. B. Expl Cell Res. 7, 558–562 (1954).

    Article  Google Scholar 

  2. Peters, A. D. biophys. biochem. Cytol. 8, 431–446 (1960).

    Article  CAS  Google Scholar 

  3. Biddle, F., March, E. & Miller, J. R. Mouse News Lett. 48, 24 (1973).

    Google Scholar 

  4. Chernoff, G., March, E. & Miller, J. R. Mouse News Lett. 51, 12 (1974).

    Google Scholar 

  5. Bird, T. D., Farrell, D. F. & Sumi, S. M. J. Neurochem. 31, 387–391 (1978).

    Article  CAS  Google Scholar 

  6. Privat, A., Jacque, C., Bourre, J. M., Dupouey, P. & Baumann, N. Neurosci. Lett. 12, 107–112 (1979).

    Article  CAS  Google Scholar 

  7. Dupouey, P. et al. Neurosci. Lett. 12, 113–118 (1979).

    Article  CAS  Google Scholar 

  8. Sidman, R. L., Dickie, M. M. & Appel, S. H. Science 144, 309–311 (1964).

    Article  ADS  CAS  Google Scholar 

  9. Meier, H. & MacPike, A. D. Expl Brain Res. 10, 512–525 (1970).

    Article  CAS  Google Scholar 

  10. Ayers, M. M. & Anderson, R. McD. Acta neuropath. 25, 54–70 (1973).

    Article  CAS  Google Scholar 

  11. Samorajski, T., Friede, R. L. & Reimer, P. R. J. Neuropath. exp. Neurol. 29, 507–523 (1970).

    Article  CAS  Google Scholar 

  12. Kirschner, D. A. & Sidman, R. L. Biochim. biophys. Acta 448, 73–87 (1976).

    Article  CAS  Google Scholar 

  13. Kishimoto, Y. J. Neurochem. 18, 1365–1368 (1971).

    Article  CAS  Google Scholar 

  14. Friedrich, V. L. & Hauser, G. J. Neurochem. 20, 1131–1141 (1973).

    Article  CAS  Google Scholar 

  15. Carnegie, P. R. & Dunkley, P. R. in Advances in Neurochemistry Vol. 1 (eds Agranoff, B. W. & Aprison, M. H.) 95–135 (Plenum, New York, 1975).

    Book  Google Scholar 

  16. Chapman, B. E., Littlemore, L. T. & Moore, W. J. in Myelination and Demyelination (ed. Palo, J.) 207–220 (Plenum, New York, 1978).

    Book  Google Scholar 

  17. Braun, P. in Myelin (ed. Morell, P.) 91–115 (Plenum, New York, 1977).

    Book  Google Scholar 

  18. Boggs, J. M. & Moscarello, M. A. Biochim. biophys. Acta 515, 1–21 (1978).

    Article  CAS  Google Scholar 

  19. Rumsby, M. G. Biochem. Soc. Trans. 6, 448–462 (1978).

    Article  CAS  Google Scholar 

  20. Maizel, J. V. in Methods in Virology Vol. 5 (eds Maramorosch, K. & Koprowski, H.) 179–246 (Academic, New York, 1971).

    Google Scholar 

  21. Brostoff, S. W. & Eylar, E. H. Archs Biochem. Biophys. 153, 590–598 (1972).

    Article  CAS  Google Scholar 

  22. Umezawa, H. Meth. Enzym. 45, part B, 678–695 (1976).

    Article  CAS  Google Scholar 

  23. Vydra, F. & Kopanica, M. Chemist Analyst 52, 88–94 (1963).

    CAS  Google Scholar 

  24. Farney, D. E. & Gold, A. M. J. Am. chem. Soc. 85, 997–1000 (1963).

    Article  Google Scholar 

  25. Cohen, S. R., McKhann, G. M. & Guarnieri, M. J. Neurochem. 25, 371–376 (1975).

    Article  CAS  Google Scholar 

  26. Dunkley, P. R. & Carnegie, P. R. in Research Methods in Neurochemistry Vol. 2 (eds Marks, N. & Rodnight, R.) 219–245 (Plenum, New York, 1974).

    Book  Google Scholar 

  27. Carnegie, P. R. Nature 229, 25–28 (1971).

    Article  ADS  CAS  Google Scholar 

  28. Eylar, E. H. & Thompson, M. Archs Biochem. Biophys. 129, 468–479 (1969).

    Article  CAS  Google Scholar 

  29. Rumsby, M. G. & Crang, A. J. in The Synthesis, Assembly and Turnover of Cell Surface Components (eds Poste, G. & Nicolson, G. L.) 247–362 (Elsevier, Amsterdam, 1977).

    Google Scholar 

  30. Mateu, L. et al. J. molec. Biol. 75, 697–709 (1973).

    Article  CAS  Google Scholar 

  31. Demel, R. A., London, Y., Geurts van Kessel, W. S. M., Vosseberg, F. G. A. & van Deenen, L. L. M. Biochim. biophys. Acta 311, 507–519 (1973).

    Article  CAS  Google Scholar 

  32. Eylar, E. H., Brostoff, S., Hashim, G., Caccam, J. & Burnett, P. J. biol. Chem. 246, 5770–5784 (1971).

    CAS  PubMed  Google Scholar 

  33. Brostoff, S. W., Karkhanis, Y. D., Carlo, D. J., Reuter, W. & Eylar, E. H. Brain Res. 86, 449–458 (1975).

    Article  CAS  Google Scholar 

  34. Braun, P. E. & Brostoff, S. W. in Myelin (ed. Morell, P.) 201–231 (Plenum, New York, 1977).

    Book  Google Scholar 

  35. Greenfield, S., Brostoff, S., Eylar, E. H. & Morell, P. J. Neurochem. 20, 1207–1216 (1973).

    Article  CAS  Google Scholar 

  36. Ganser, A. L. & Kirschner, D. A. Trans. Am. Soc. Neurochem. 10, 177 (1979).

    Google Scholar 

  37. Blaurock, A. E. J. molec. Biol. 56, 35–52 (1971).

    Article  CAS  Google Scholar 

  38. Caspar, D. L. D. & Kirschner, D. A. Nature new Biol. 231, 46–52 (1971).

    Article  CAS  Google Scholar 

  39. Deibler, G. E., Martenson, R. E. & Kies, M. W. Prep. Biochem. 2, 139–165 (1972).

    CAS  PubMed  Google Scholar 

  40. Kitamura, K., Yamanaka, T. & Uyemura, K. Biochim. biophys. Acta 379, 582–591 (1975).

    Article  CAS  Google Scholar 

  41. Wiggins, R. C., Benjamins, J. A. & Morell, P. Brain Res. 89, 99–106 (1975).

    Article  CAS  Google Scholar 

  42. Deibler, G. E., Driscoll, B. F. & Kies, M. W. J. Neurochem. 30, 401–412 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirschner, D., Ganser, A. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 283, 207–210 (1980). https://doi.org/10.1038/283207a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283207a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing