Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ribonucleotides in DNA newly synthesised in 3T6 cells in vivo

Abstract

Within the field of DNA replication, considerable interest has focused in recent years on the mechanism of initiation of synthesis of DNA molecules. In vitro replication systems from Escherichia coli have been instrumental in uncovering a priming function for ribonucleotides on the earliest intermediates of DNA polymerisation in vitro and in identifying the proteins involved1–3. In vitro replication systems from mammalian cells that permit the use of the phosphate-transfer method for detection of RNA-DNA junctions as well as direct labelling of the RNA moiety of the molecules have suggested a similar role for ribonucleotides in DNA synthesis in eukaryotes4–8. However, the existence of this mechanism in mammalian cells in vivo has not been established. Here we report the first evidence that a significant proportion of the earliest intermediates in mammalian DNA polymerisation in vivo do, in fact, possess ribonucleotides, presumably because their synthesis was initiated with one or more ribonucleotides.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Brutlag, D., Schekman, R. & Kornberg, A. Proc. natn. Acad. Sci. U.S.A. 68, 2826–2829 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Weiner, J. H., McMacken, R. & Kornberg, A. Proc. natn. Acad. Sci. U.S.A. 73, 752–756 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Wickner, S. Proc. natn. Acad. Sci. U.S.A. 74, 2815–2819 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Reichard, P., Eliasson, R. & Söderman, G. Proc. natn. Acad. Sci. U.S.A. 71, 4901–4905 (1975).

    Article  ADS  Google Scholar 

  5. Waqar, M. & Huberman, J. A. Cell 6, 551–557 (1975).

    Article  CAS  Google Scholar 

  6. Tseng, B. Y. & Goulian, M. J. molec. Biol. 99, 339–346 (1975).

    Article  CAS  Google Scholar 

  7. Tseng, B. Y. & Goulian, M. Cell 12, 483–489 (1977).

    Article  CAS  Google Scholar 

  8. Eliasson, R. & Reichard, P. J. biol. Chem. 253, 7469–7475 (1978).

    CAS  PubMed  Google Scholar 

  9. Miyamoto, C. & Denhardt, D. T. J. molec. Biol. 116, 681–707 (1977).

    Article  CAS  Google Scholar 

  10. Kowalski, J. & Denhardt, D. T. Nucleic Acids Res. 5, 4355–4373 (1978).

    Article  CAS  Google Scholar 

  11. Denhardt, D. T., Kowalski, J. & Miyamoto, C. Cold Spring Harb. Symp. quant. Biol. 43, 243–252 (1979).

    Article  CAS  Google Scholar 

  12. Ogawa, T., Hirose, S., Okazaki, T. & Okazaki, R. J. molec. Biol. 112, 121–140 (1977).

    Article  CAS  Google Scholar 

  13. Kurosawa, Y., Ogawa, T., Hirose, S., Okazaki, T. & Okazaki, R. J. molec. Biol. 96, 653–664 (1975).

    Article  CAS  Google Scholar 

  14. Waqar, M. & Huberman, J. Biochim. biophys. Acta 383, 410–420 (1975).

    Article  CAS  Google Scholar 

  15. Fox, R., Mendelsohn, J., Barbosa, E. & Goulian, M. Nature new Biol. 245, 234–237 (1973).

    Article  CAS  Google Scholar 

  16. Sadoff, R. & Cheevers, W. P. Biochem. biophys. Res. Commun. 53, 813–823 (1973).

    Article  Google Scholar 

  17. Probst, H., Gentner, P., Hofstatter, T. & Jenke, S. Biochim. biophys. Acta 340, 361–373 (1974).

    Article  CAS  Google Scholar 

  18. Bernardi, A. & Bernardi, G. Biochim. biophys. Acta 155, 360–370 (1968).

    Article  CAS  Google Scholar 

  19. Silverman, S. & Söll, D. Nucleic Acids Res. 4, 3511–3517 (1977).

    Article  CAS  Google Scholar 

  20. Bernardi, A. & Cantoni, G. J. biol. Chem. 244, 1468–1476 (1969).

    CAS  PubMed  Google Scholar 

  21. Kaufman, G., Anderson, S. & DePamphilis, M. J. molec. Biol. 116, 549–567 (1977).

    Article  Google Scholar 

  22. Alberts, B. & Sternglanz, R. Nature 269, 655–661 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Tseng, B. Y., Erickson, J. M. & Goulian, M. J. molec. Biol. 129, 531–545 (1979).

    Article  CAS  Google Scholar 

  24. Kowalski, J. & Cheevers, W. P. J. molec. Biol. 104, 603–615 (1976).

    Article  CAS  Google Scholar 

  25. Perlman, D. & Huberman, J. A. Cell 12, 1029–1043 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kowalski, J., Denhardt, D. Ribonucleotides in DNA newly synthesised in 3T6 cells in vivo. Nature 281, 704–706 (1979). https://doi.org/10.1038/281704a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/281704a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing