Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Differences in A and B forms of monoamine oxidase revealed by limited proteolysis and peptide mapping


Monoamine oxidase (MAO, EC is a mitochondrial outer membrane enzyme which deaminates amine transmitters in the nervous system and biogenic amines throughout the body. At least two types of MAO activity have been identified which differ in their specificities for substrates and sensitivities to inhibitors1–3. Type A preferentially deaminates 5-hydroxy-tryptamine and noradrenaline and is more sensitive to inhibition by clorgyline. Type B deaminates phenylethylamine and benzylamine and is more sensitive to inhibition by deprenyl. Tissues from several species express MAO A alone, MAO B alone, or both types of MAO. Furthermore, the two types of activity follow different developmental sequences in certain tissues. Models to explain the molecular and genetic regulation of this enzyme4 raise two questions: (1) are there different enzyme molecules associated with A and B types of activity, and (2) if there is only one enzyme molecule, how do differences in the microenvironment of this enzyme within the outer mitochondrial membrane produce two types of activity? Attempts to separate and purify the different types of activity have involved solubilisation and lipid extraction procedures that alter the kinetics of the enzyme and differentially affect the A and B types of activity5–8. Immunological studies9,10 have produced equivocal results. None of these observations has elucidated the molecular basis of the differences between the types of MAO activity. Here, we have used the technique of proteolytic digestion and peptide mapping to demonstrate that there are distinct enzyme molecules associated with the A and B types of MAO activity. This finding implies that the A and B forms of MAO may be coded for by separate gene loci and represent evolutionarily related proteins which have diverged in function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Neff, N. H. & Yang, H.-Y. T. Life Sci. 14, 2061–2074 (1974).

    Article  CAS  Google Scholar 

  2. Houslay, M. D., Tipton, K. F. & Youdim, M. B. H. Life Sci. 19, 467–478 (1976).

    Article  CAS  Google Scholar 

  3. Murphy, D. L. Biochem. Pharmac. 27, 1889–1893 (1978).

    Article  CAS  Google Scholar 

  4. Breakefield, X. O., Cawthon, R. M., Costa, M. R. C., Edelstein, S. B. & Hawkins, M. Jr in Soc. Neurosci. Symp. 4 (ed. Ferrendelli, J. A.) 43–66 (Society for Neuroscience, Bethesda, 1979).

    Google Scholar 

  5. Houslay, M. D. & Tipton, K. F. Biochem. J. 135, 173–186 (1973).

    Article  CAS  Google Scholar 

  6. Ekstedt, B. & Oreland, L. Biochem. Pharmac. 25, 119–124 (1976).

    Article  CAS  Google Scholar 

  7. Kandaswami, C., Diaz Borges, J. M. & D'Iorio, A. Archs Biochem. Biophys. 183, 273–280 (1977).

    Article  CAS  Google Scholar 

  8. McCauley, R. Archs Biochem. Biophys. 189, 8–13 (1978).

    Article  CAS  Google Scholar 

  9. Dennick, R. G. & Mayer, R. J. Biochem. J. 161, 167–174 (1977).

    Article  CAS  Google Scholar 

  10. McCauley, R. & Racker, E. Molec. Cell. Biochem. 1, 73–81 (1973).

    Article  CAS  Google Scholar 

  11. Oreland, L., Kinemuchi, H. & Stigbrand, T. Archs Biochem. Biophys. 159, 854–860 (1973).

    Article  CAS  Google Scholar 

  12. McCauley, R. Biochem. Pharmac. 25, 2214–2216 (1976).

    Article  CAS  Google Scholar 

  13. Youdim, M. B. H. in Flavins and Flavoproteins (ed. Singer, T. P.) 593–609 (Elsevier, Amsterdam, 1976).

    Google Scholar 

  14. Costa, M. R. C. & Breakefield, X. O. Molec. Pharmac. 16, 242–249 (1979).

    CAS  Google Scholar 

  15. Edwards, D. J. & Pak, K. Y. Biochem. biophys. Res. Commun. 86, 350–357 (1979).

    Article  CAS  Google Scholar 

  16. Chuang, H. Y. K., Patek, D. R. & Hellerman, L. J. boil. Chem. 249, 2381–2384 (1974).

    CAS  Google Scholar 

  17. Williams, C. H. & Lawson, J. Biochem. Pharmac. 24, 1889–1891 (1975).

    Article  CAS  Google Scholar 

  18. Cleveland, D. W., Fischer, S. G., Kirschner, M. W. & Laemmli, U. K. J. biol. Chem. 252, 1102–1106 (1977).

    CAS  Google Scholar 

  19. Cabral, F. et al. J. biol. Chem. 253, 297–304 (1978).

    CAS  PubMed  Google Scholar 

  20. Warren, T. G. & Mahowald, A. P. Devl Biol. 68, 130–139 (1979).

    Article  CAS  Google Scholar 

  21. Murphy, D. L., Donnelly, C. H. & Richelson, E. J. Neurochem. 26, 1231–1235 (1976).

    Article  CAS  Google Scholar 

  22. O'Farrell, P. Z., Goodman, H. M. & O'Farrell, P. H. Cell 12, 1133–1142 (1977).

    Article  CAS  Google Scholar 

  23. Liu, A. Y-C. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 73, 568–572 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Maizel, J. V. Meth. Virol. 5, 179–224 (1971).

    Article  Google Scholar 

  25. Horvitz, H. R. Nature new Biol. 244, 137–140 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cawthon, R., Breakefield, X. Differences in A and B forms of monoamine oxidase revealed by limited proteolysis and peptide mapping. Nature 281, 692–694 (1979).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing