Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus

Abstract

The physical nature of small air ions is well established and it is recognised that they can produce a variety of biological effects1. However, in only a few instances have any underlying biochemical changes been detected2–4. Theoretically, one can consider the hydrated Superoxide radical anion (O2) (H2O)n with n4–8 as a likely candidate for a biologically active species of negative air ion5. The chemical and biological reactivity of Superoxide is high6 and includes a leading role in bacterial killing caused by radiation7,8, in which Superoxide dismutase (SOD), an enzyme that catalyses the reaction: O2+O22H→H2O2+O2 protected markedly. Other studies have also demonstrated the bactericidal effect of O2 (refs 9–11). Inasmuch as the bactericidal action of small negative air ions has been repeatedly confirmed, we decided to test for the involvement of O2 in this phenomenon by evaluating the protective effect of SOD. Our results show strong O2 involvement in negative air ion bacterial kill.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kreuger, A. P. & Reed . Science 193, 1209–1213 (1976).

    ADS  Article  Google Scholar 

  2. 2

    Kotaka, S., Krueger, A. P. & Andriese, P. C. Int. J. Biometeor. 12, 85–92 (1968).

    Article  Google Scholar 

  3. 3

    Krueger, A. P. et al. Int. J. Biometeor. 10, 29–38 (1966).

    CAS  Article  Google Scholar 

  4. 4

    Krueger, A. P., Andriese, P. C. & Kotaka, S. Int. J. Biometeor. 12, 225–239 (1968).

    CAS  Article  Google Scholar 

  5. 5

    Announcement of the Joint Committee on Atmospheric Electricity of the Union Geodesique et Geophysique Internationale, 1967: Discussion on Mobility of Atmospheric Ions. Symposium at Lucerne, Switzerland. 2 October 1967.

  6. 6

    Fridovich, I. in Free Radicals in Biology Vol. 1 (ed. Pryor, W. A.) 239–277 (1976).

    Google Scholar 

  7. 7

    Misra, H. P. & Fridovich, I. Archs Biochem. Biophys. 176, 577–581 (1976).

    CAS  Article  Google Scholar 

  8. 8

    Oberley, L. W., Lindgren, A. L., Baker, S. A. & Stevens, R. H. Radiat. Res. 68, 320–328 (1976).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Gregory, E. M., Yost, F. J. Jr & Fridovich, I. J. Bact. 115, 987–991 (1973).

    CAS  PubMed  Google Scholar 

  10. 10

    Babior, B. M., Carnutte, J. T. & Kipnes, R. S. J. Lab. clin. Med. 85, 235–244 (1975).

    CAS  PubMed  Google Scholar 

  11. 11

    Rosen, H. & Klebanoff, S. J. J. exp. Med. 149, 27–39 (1979).

    CAS  Article  Google Scholar 

  12. 12

    Krueger, A. P., Reed, E. J., Brook, K. B. & Day, M. B. Int. J. Biometeor. 19, 65–71 (1975).

    CAS  Article  Google Scholar 

  13. 13

    McCord, J. M. & Fridovich, I. J. biol. Chem. 244, 6049–6055 (1969).

    CAS  PubMed  Google Scholar 

  14. 14

    Kellogg, E. W. III & Fridovich, I. J. biol. Chem. 250, 8812–8817 (1975); 252, 6721–6728 (1977).

    CAS  PubMed  Google Scholar 

  15. 15

    Niehaus, W. G. Jr Bio-org. Chem. 7, 77–84 (1978).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kellogg, E., Yost, M., Barthakur, N. et al. Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus. Nature 281, 400–401 (1979). https://doi.org/10.1038/281400a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.