Abstract
THE dilution of the atmospheric 14CO2 concentration by large amounts of fossil-fuel derived CO2 which do not contain any 14C is commonly called the Suess effect. Its magnitude can be calculated with the same geochemical models as the global carbon cycle that also predict the future rise of atmospheric CO2 to be caused by the combustion of fossil fuels. Validation of a CO2 predictive model with the Suess effect 14C data is important because these two phenomena have a common cause, and therefore register model responses at roughly the same frequencies. Measurements of the Suess effect yield values between −15‰, and −25‰ in Δ 14C (in 1950)1, while different model predictions also cover about this range2,3. The requirement that a model correctly reproduces the Suess effect becomes a strong constraint when the accuracy of the measurement is improved to better than 2‰. 14C measurements in tree rings to an accuracy of 1.2‰ are reported here. The results indicate that the natural fluctuations of atmospheric 14C as yet preclude determination of the Suess effect to the accuracy required by the models.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Lerman, J. C., Mook, W. G. & Vogel, J. C. in Radiocarbon variations and absolute chronology (ed. Olsson, I. U.) 275–301 (Wiley, New York, 1970).
- 2
Bacastow, R. & Keeling, C. D. in Carbon and the biosphere (eds Woodwell, G. M. & Pecan, E. V.) 86–135 (US Atomic Energy Commission Conference 720510, 1973).
- 3
Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelmann, A. Tellus 27, 168–192 (1975).
- 4
Tans, P. P. & Mook, W. G. Radiocarbon 21, 22–40 (1978).
- 5
Tans, P. P., de Jong, A. F. M. & Mook, W. G. Nature 271, 234–235 (1978).
- 6
Damon, P. E., Long, A. & Wallick, E. I. Earth planet. Sci. Lett. 20, 300–306 (1973).
- 7
Keeling, C. D. Tellus 25, 174–197 (1973).
- 8
Lingenfelter, R. E. & Ramaty, R. in Radiocarbon variations and absolute chronology (ed. Olsson, I. U.) 513–537 (Wiley, New York, 1970).
- 9
Forbush, S. E. Phys. Rev. 70, 771 (1946).
- 10
Forbush, S. E., Stinchomb, T. B. & Schein, M. Phys. Rev. 79, 501 (1950).
- 11
Münnich, K. O. Naturwisschaften 50, 218–221 (1963).
- 12
östlund, H. G. & Engstrand, L. G. Radiocarbon 5, 203–227 (1963).
- 13
Nydal, R., Lövseth, K. & Gulliksen, S. in Proc. 9th int. Conf. Radiocarbon Dating, California (in the press).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
TANS, P., DE JONG, A. & MOOK, W. Natural atmospheric 14C variation and the Suess effect. Nature 280, 826–828 (1979). https://doi.org/10.1038/280826a0
Received:
Accepted:
Issue Date:
Further reading
-
Dietary plasticity and the importance of salmon to brown bear (Ursus arctos) body size and condition in a low Arctic ecosystem
Polar Biology (2020)
-
Changes to Carbon Isotopes in Atmospheric CO 2 Over the Industrial Era and Into the Future
Global Biogeochemical Cycles (2020)
-
Different chemical composition and storage mechanism of soil organic matter between active and permafrost layers on the Qinghai–Tibetan Plateau
Journal of Soils and Sediments (2020)
-
High resolution reconstruction of modern charcoal production kilns: An integrated approach combining dendrochronology, micromorphology and anthracology in the French Pyrenees
Quaternary International (2020)
-
Prebomb to Postbomb 14 C History From the West Side of Palawan Island: Insights Into Oceanographic Changes in the South China Sea
Journal of Geophysical Research: Oceans (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.