Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impact of CO2 on cooling of snow and water surfaces

Abstract

THE levels of CO2 in the atmosphere are being increased by the burning of fossil fuels and reduction of biomass1–3. It has been calculated that the increase in CO2 levels should lead to global warming because of increased absorption by the atmosphere of terrestrial longwave radiation in the far IR (>5 μm)4–7. From model computations, CO2 is expected to produce the largest climatic effect in high latitudes by reducing the size of ice and snow fields4. We present here computations of spectral radiative transfer and scattering within a snow pack and water. The results suggest that CO2 significantly reduces the shortwave energy absorbed by the surface of snow and water. The energy deficit, when not compensated by downward atmospheric radiation, may delay the recrystallisation of snow and dissipation of pack-ice and result in a cooling rather than a warming effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Revelle, R. & Suess, H. Tellus 9, 18–27 (1957).

    Article  ADS  CAS  Google Scholar 

  2. Keeling, C. D. et al. Tellus 28, 538–551 (1976).

    ADS  CAS  Google Scholar 

  3. Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelman, A. Tellus 27, 168–192 (1975).

    Article  ADS  CAS  Google Scholar 

  4. Manabe, S. & Wetherald, R. T. J. atmos. Sci. 32, 3–15 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Sellers, W. D. J. appl. Meteor. 13, 831–833 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Broecker, W. S. Science 189, 460–463 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Kellogg, W. W. Tech. Notes Wld Met. Org. No. 156 (1977).

  8. Untersteiner, N. Arch. Met. Geophys. Bioklim., A12, 151–182 (1961).

    Article  Google Scholar 

  9. Bilello, M. A., Bates, R. E. & Riley, J. NASA Tech. Rep. 230, 33 p. (1970).

    Google Scholar 

  10. Ambach, W. Untersuchungen des Energiehaushaltes und des freien Wassergehaltes beim Abbau der winterlichen Schneedecke (1965).

    Article  ADS  Google Scholar 

  11. Lyzenga, D. R. Icarus 19, 240–243 (1973).

    Article  ADS  Google Scholar 

  12. Hansen, J. E. & Travis, L. D. Space Sci. Rev. 16, 527–610 (1974).

    Article  ADS  Google Scholar 

  13. Choudhury, B. J. & Chang, A. T. C. NASA, Techn. Mem. TM 79639 (1978).

  14. O'Brien, H. S. & Munis, R. H. NASA SP-391 (1975).

  15. Joseph, J. H., Wiscombe, W. J. & Weinman, J. A. J. atmos. Sci. 33, 2452–2459 (1976).

    Article  ADS  Google Scholar 

  16. Ivanoff, A. in Proc. NATO Advanced Study Institute—Modeling and Prediction of the Upper Layers of the Ocean (1975). (ed. Kraus, E.B.) 47–71 (Pergamon, New York, 1977).

    Google Scholar 

  17. Pfund, A. H. J. Opt. Soc. Am. 29, 56–58 (1939).

    Article  ADS  CAS  Google Scholar 

  18. Keeling, C. D. & Bacastow, R. B. in Energy and Climate 72–95 (National Academy of Sciences, Washington, D.C. 1977).

    Google Scholar 

  19. McLatchie, R. A. et al. USAF Cambridge Research Laboratory Tech. Rep. 73 00 96 (1973).

  20. Bo-Leckner, R. Solar Energy 20, 143–150 (1978).

    Article  ADS  Google Scholar 

  21. Portman, D. J. & Ryznar, E. US Army Snow Ice and Permafrost Research Establishment Res. Rep. 74 (1961).

  22. Chernigovskii, N. T. in Soviet Data on the Arctic Heat Budget and its Climatic Influence (eds Fletcher, J. O., Keller, B. & Olenicoff, S. M.) 151–173 (Rand Corporation Memorandum RM-5003-PR, 1971).

    Google Scholar 

  23. Kojima, K., Kobayashi, D., Kobayashi, S., Naruse, R. & Ishikawa, N. Low Temperature Science A28 (Data Rep., 1970).

    Google Scholar 

  24. Weaver, R. L., Barry, R. G. & Jacobs, J. D. Proc. 3rd int. Conf. on Port and Ocean Engineering under Arctic Conditions 1, 455–467 (1975).

    Google Scholar 

  25. Kukla, G. J. et al. Nature 270, 573–580 (1977).

    Article  ADS  Google Scholar 

  26. Kukla, G. & Gavin, J. Proc. Riederalp Workshop (1978), IAHS–AISH Publ. no. 126, 249–258 (1979).

    Google Scholar 

  27. Ackerman, T. P. Tellus 31, 115–123 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CHOUDHURY, B., KUKLA, G. Impact of CO2 on cooling of snow and water surfaces. Nature 280, 668–671 (1979). https://doi.org/10.1038/280668a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280668a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing