Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased intracellular cyclic GMP does not correlate with protein discharge from pancreatic acinar cells

Abstract

THE pancreatic acinar cell discharges secretory proteins in response to cholecystokinin–pancreozymin (CCK–PZ) and its analogues, or to cholinergic agonists such as carbamylcholine (carbachol). The mechanisms for stimulus–secretion coupling in the acinar cell are not known, although intracellular and, to some extent, extracellular Ca2+ are required1–4, and a transient 10- to 20-fold increase in intracellular levels of guanosine cyclic 3′5′-monophosphate (cyclic GMP) accompanies onset of induced discharge5,6. It has been proposed5 that cyclic GMP may be a direct mediator of hormone-stimulated discharge, with the Ca2+-dependent event either causing, or being caused by, increases in cyclic GMP7,8. To test this hypothesis, we have monitored the effects of several substances on secretory protein discharge and intracellular cyclic GMP levels in guinea pig pancreatic acini. Our results, reported here, are not consistent with a role for cyclic GMP in a direct causative pathway leading to discharge, as four of the compounds tested (N-methyl-N-nitro-N-nitrosoguanidine (MNNG), sodium nitrite, hydroxyl-amine and sodium nitroprusside) elevated levels of cyclic GMP but did not trigger discharge, although acini treated with these agents remained competent to respond to natural secretagogues. Conversely, the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) did not affect cyclic GMP levels, but did elicit discharge. In contrast to observations on cyclic GMP, the requirement for extracellular Ca2+ correlated well with discharge. Our findings therefore do not support the hypothesis that cyclic GMP is directly involved in stimulus–secretion coupling, but are consistent with such a role for Ca2+. A preliminary report of this work has appeared9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, J. A. & Chandler, D. Am. J. Physiol. 228, 1729–1732 (1975).

    CAS  PubMed  Google Scholar 

  2. Kano, T. & Nishimura, O. J. Physiol., Lond. 257, 309–324 (1976).

    Article  Google Scholar 

  3. Chandler, D. E. & Williams, J. A. J. Cell Biol. 76, 371–385 (1978).

    Article  CAS  Google Scholar 

  4. Williams, J. A. Cell Tissue Res. 192, 277–284 (1978).

    Article  CAS  Google Scholar 

  5. Haymovits, A. & Scheele, G. A. Proc. natn. Acad. Sci. U.S.A. 73, 156–160 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Albano, J., Bhoola, K. D. & Harvey, R. F. Nature 262, 404–406 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Scheele, G. A. & Haymovits, A. Ann. N.Y. Acad. Sci. 307, 648–652 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Christophe, J. P., Frandsen, E. K., Conlon, T. P., Krishna, G. & Gardner, J. D. J. biol. Chem. 251, 4640–4645 (1976).

    CAS  PubMed  Google Scholar 

  9. Gunther, G. R. & Jamieson, J. D. J. Cell Biol. 75, 415a (1977).

    Google Scholar 

  10. Boutwell, R. K. Crit. Rev. Tox. 2, 419–443 (1974).

    Article  CAS  Google Scholar 

  11. Estensen, R. D. et al. in The Regulation of Proliferation in Animal Cells (ed. Clarkson, B. & Baserga, R.) 627–634 (Cold Spring Harbor Laboratory, New York, 1974).

    Google Scholar 

  12. White, J. G., Goldberg, N. D., Estensen, R. D., Haddox, M. K. & Rao, G. H. R. J. clin. Invest. 52, 89a (1973).

    Google Scholar 

  13. DeRubertis, F. R. & Craven, P. A. Science 193, 897–899 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Kimura, H., Mittal, C. K. & Murad, F. J. biol. Chem. 250, 8016–8022 (1975).

    CAS  PubMed  Google Scholar 

  15. Kimura, H., Mittal, C. K. & Murad, F. Nature 257, 700–702 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Katsuki, S. & Murad, F. Molec. Pharmac. 13, 330–341 (1977).

    CAS  Google Scholar 

  17. Schultz, K.-D., Schultz, K. & Schultz, G. Nature 265, 750–751 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Haddox, M. K. et al. in Growth Kinetics and Biochemical Regulation of Normal and Malignant Cells (eds Drewinko, B. & Humphrey, R. M.) 255–269 (Williams and Wilkins, Baltimore, 1977).

    Google Scholar 

  19. Goldberg, D. D. et al. in Advances in Cyclic Nucleotide Research (eds Greengard, P. & Robinson, G. A.) 101–130 (Raven, New York, 1978).

    Google Scholar 

  20. Haddox, M. K., Stephenson, J. H., Moser, M. E. & Goldgerg, N. D. J. biol. Chem. 253, 3143–3152 (1978).

    CAS  PubMed  Google Scholar 

  21. Erspamer, V. A. Rev. Pharmac. 11, 327–350 (1971).

    Article  CAS  Google Scholar 

  22. Kapoor, C. L. & Krishna, G. Science 196, 1003–1005 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Heisler, S. & Lambert, M. Can. J. Physiol. Pharmac. 56, 395–399 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Ong, S. H., Whitley, T. H., Stowe, N. W. & Steiner, A. L. Proc. natn. Acad. Sci. U.S.A. 72, 2022–2026 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Williams, J. A. & Lee, M. Biochem. biophys. Res. Commun. 60, 542–548 (1974).

    Article  CAS  Google Scholar 

  26. Gunther, G. R., Schultz, G. S., Hull, B. E., Alicea, H. A. & Jamieson, J. D. J. Cell Biol. 75, 368a (1977).

    Google Scholar 

  27. Amsterdam, A., Solomon, T. E. & Jamieson, J. D. in Meth. Cell Biol. 20, 362–378 (1978).

    Google Scholar 

  28. Matsuzawa, H. & Nirenberg, M. Proc. natn. Acad. Sci. U.S.A. 72, 3472–3476 (1975).

    Article  ADS  CAS  Google Scholar 

  29. Steiner, A. L., Parker, C. W. & Kipnis, D. M. J. biol. Chem. 247, 1106–1113 (1972).

    CAS  Google Scholar 

  30. Burton, K. Biochem. J. 62, 315–323 (1956).

    Article  CAS  Google Scholar 

  31. Amsterdam, A. & Jamieson, J. D. J. Cell Biol. 63, 1057–1073 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GUNTHER, G., JAMIESON, J. Increased intracellular cyclic GMP does not correlate with protein discharge from pancreatic acinar cells. Nature 280, 318–320 (1979). https://doi.org/10.1038/280318a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280318a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing