Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequence divergence of rainbow trout protamine mRNAs; comparison of coding and non-coding nucleotide sequences in three protamine cDNA plasmids

Abstract

SPERMATOGENESIS in the rainbow trout (Salmo gairdnerii) is associated with the Onset of synthesis of the protamines1,2, a family of small, highly basic proteins consisting of 32 or 33 residues, of which approximately two-thirds are arginine3. By displacing the histones, the protamines have a unique role in packaging sperm DNA. The biosynthesis of the protamines has been studied in some detail, and polyadenylated protamine mRNA of about 290 nucleotides has been isolated from trout testis4,5 and shown by R0t analysis to be made up of three to four components5,6. More recent work suggests that there are about six different protamine genes per haploid genome7. In contrast to the interspecific conservation of histone sequences, the observed rate of protamine sequence divergence between the closely related clupeid fishes such as trout, salmon and herring, is very high, and there is evidence that protamine genes have arisen following a doubling of the ancestral fish genome. Comparison of the cloned complementary DNA sequences and ultimately of the genes themselves will help to elucidate the molecular events involved in the evolution of these proteins. To study the chromosomal organisation of these genes and the control of their expression during spermatogenesis, I have constructed cDNA clones using purified poly(A)+ mRNA as starting material. Here, the sequences of three of these recombinants are compared, revealing an unexpected pattern of divergence in the coding and non-coding regions, as well as a mutational ‘hot-spot’ corresponding to the major phosphorylation site of the protamines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marushige, K. & Dixon, G. H. Devl Biol. 19, 397–414 (1969).

    Article  CAS  Google Scholar 

  2. Marushige, K. & Dixon, G. H. J. biol. Chem. 246, 5799–5805 (1971).

    CAS  PubMed  Google Scholar 

  3. Ando, T. & Watanabe, S. Int. J. Protein Res. 1, 221–224 (1969).

    Article  CAS  Google Scholar 

  4. Gedamu, L. & Dixon, G. H. J. biol. Chem. 251, 1455–1463 (1976).

    CAS  PubMed  Google Scholar 

  5. Jenkins, J. R., Bishop, J. O. & Butterworth, P. H. W. (in preparation).

  6. Iatrou, K. & Dixon, G. H. Cell 10, 433–441 (1977).

    Article  CAS  Google Scholar 

  7. Sakai, M., Fuji-Kuriyama, Y. & Muramatsu, M. Biochemistry 17, 5510–5515 (1978).

    Article  CAS  Google Scholar 

  8. Maxam, A. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 74, 560–564 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Ferrier, L. N., Davies, P. L. & Dixon, G. H. Biochim. biophys. Acta 479, 460–470 (1977).

    Article  CAS  Google Scholar 

  11. Poon, R., Yuet, W. K. & Boyer, H. W. Nucleic Acids Res. 5, 4625–4630 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Salser, W. Cold Spring Harb. Symp. quant. Biol. 42, 985–1002 (1977).

    Article  Google Scholar 

  13. Kafatos, F. C., Efstratiadis, A., Forget, B. A. & Weissman, S. Proc. natn. Acad. Sci. U.S.A. 74, 5618–5622 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Ohno, S. & Atkin, N. B. Chromosoma 18, 455–466 (1966).

    Article  CAS  Google Scholar 

  15. Bailey, G. S., Cox, G. T. & Wilson, A. C. Biochem biophys. Res. Commun. 34, 605–612 (1969).

    Article  CAS  Google Scholar 

  16. Ohno, S. Monographs on Endocrinology Vol. 1, 63–64 (Springer, New York, 1967).

    Google Scholar 

  17. Ling, V., Jergil, B. & Dixon, G. H. J. biol. Chem. 246, 1168–1176 (1971).

    CAS  PubMed  Google Scholar 

  18. Karkel, D. A., Tilghman, S. M. & Leder, P. Cell 15, 1125–1132 (1978).

    Article  Google Scholar 

  19. Marotta, C. A., Wilson, J. T., Forget, B. A. & Weissman, S. M. J. biol. Chem. 252, 5040–5059 (1977).

    CAS  PubMed  Google Scholar 

  20. Ando, T. & Suzuki, K. Biochim. biophys. Acta 140, 375–377 (1967).

    Article  CAS  Google Scholar 

  21. Ando, T. & Suzuki, K. Biochim. biophys. Acta 121, 427–429 (1966).

    Article  CAS  Google Scholar 

  22. Sanders, M. M. & Dixon, G. H. J. biol. Chem. 247, 851–855 (1972).

    CAS  PubMed  Google Scholar 

  23. Dixon, G. H. Karolinska 5th Symposium on Research Methods in Reproductive Endocrinology, 130–154 (1972).

    Google Scholar 

  24. Davies, P. L., Ferrier, L. N. & Dixon, G. H. J. biol. Chem. 252, 1386–1393 (1977).

    CAS  PubMed  Google Scholar 

  25. Setlow, P. in Handbook of Biochemistry and Molecular Biology—Nucleic Acids Vol. 2 (ed. Fasman, G. D.) 312–318 (CRC Press, Cleveland, Ohio, 1976).

    Google Scholar 

  26. Fraser, N. W., Burden, R. H. & Elton, R. A. Nucleic Acids Res. 2, 2131–2146 (1975).

    Article  CAS  Google Scholar 

  27. Roy, P. H. & Weissbach, A. Nucleic Acids Res. 2, 1669–1684 (1975).

    Article  CAS  Google Scholar 

  28. Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Nature 274, 775–780 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

JENKINS, J. Sequence divergence of rainbow trout protamine mRNAs; comparison of coding and non-coding nucleotide sequences in three protamine cDNA plasmids. Nature 279, 809–811 (1979). https://doi.org/10.1038/279809a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279809a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing