Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Depth of curie temperature in continental shields: a compositional boundary?

Abstract

MUCH attention is being given to estimating the depth to the bottom of the crustal magnetised layer. The latter can be interpreted as the surface where ferrimagnetic minerals, which are responsible for the magnetisation of crustal rocks, reach their Curie temperatures 1·5. The depth of this surface is therefore temperature dependent and it can be used to locate thermal anomalies within the continental crust. One application would be in the search for shallow intercrustal heat sources (such as large magmatic reservoirs or cooling plutons) which would be of economic interest as natural energy sources3,6. In all these works the bottom of the crustal magnitised layer is assumed to correspond to an isotherm whose temperature is approximately the Curie temperature of pure magnetite (580 °C). Haggerty7 cautioned against assuming a single Curie temperature for the continental crust and pointed out that Curie temperatures as low as 300 °C may exist in the crust because of the low temperature oxidation of titaniferous magnetite. Furthermore, he suggested that depths of Curie temperatures greater than 20 km may be due to serpentinisation of mafic and ultramafic components of the continental lower crust with consequent formation of Fe–Co–Ni alloys with Curie temperatures in the range 620–1,100 °C. We show here that depths of Curie temperatures computed for continental areas characterised by normal and low heat flow cannot be interpreted as isothermal surfaces with temperatures at or above 580 °C. We suggest that the bottom of the crustal magnetised layer may correspond to vertical compositional changes within the crust.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vacquier, V. & Affleck, J. Trans. Am. Geophys. Un. 22nd A. Meet. 446 (1941).

  2. Bhattcharaya, B. K. & Morley, L. W. J. Geomag. Geoelectr. 17, 237 (1965).

    Article  ADS  Google Scholar 

  3. Bhattcharaya, B. K. & Leu, L. K. J. Geophys. Res. 80, 4461 (1975).

    Article  ADS  Google Scholar 

  4. Shuey, R. T., Schellinger, D. K., Tripp, A. C. & Alley, L. B. Geophys. J. R. astr. Soc. 50, 75 (1977).

    Article  ADS  Google Scholar 

  5. Byerly, P. E. & Stolt, R. H. Geophysics 42, 1394 (1977).

    Article  ADS  Google Scholar 

  6. Smith, R. B., Shuey, R. T., Pelton, J. R. & Baily, J. P. J. Geophys. Res. 82, 3665 (1977).

    Article  ADS  Google Scholar 

  7. Haggerty, S. E. Geophys. Res. Lett. 5, 105 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Corrado, G., Gasparini, P., Mantovani, M. S. M. & Rapolla, A. Rev. Brazil. Geoc. (in the press).

  9. Cordani, U. G., Amaral, G. & Kawashita, K. Geol. Rdsch. 62, 309 (1973).

    Article  CAS  Google Scholar 

  10. Almeida, F. F. de Rev. Brazil. Geoc. 7, 349 (1977).

    Google Scholar 

  11. Blitzkow, D. Gasparini, P., Mantovani, M. S. M. & Sà, N. C. de Rev. Brazil. Geoc. (in the press).

  12. Giese, P. Rep. to the Brazil–Germany scientific agreement (1975).

  13. Ussami, N., Hamza, V. M. & Vitorello, I. 30th Congr. Brasiliero de Geologia (1978).

  14. Bosum, W. Rev. Brasil. Geoc. 3, 149 (1973).

    Google Scholar 

  15. Spector, A. & Grant, F. S. Geophysics 35, 293 (1970).

    Article  ADS  Google Scholar 

  16. Roy, R. F., Blackwell, D. D. & Birch, F. Earth planet. Sci. Lett. 5, 1 (1968).

    Article  ADS  Google Scholar 

  17. Hyndmann, R . D., Lambert, I. B., Heier, K. S., Jaeger, J. C. Ringwood, A. E. Phys. Earth Planet. Inter. 1, 129 (1968).

    Article  ADS  Google Scholar 

  18. Lachenbruch, A. H. J. geophys. Res. 73, 6977 (1968).

    Article  ADS  Google Scholar 

  19. Heier, K. S. Geol. Foron. Stock. Fork. 87, 249 (1965).

    Article  CAS  Google Scholar 

  20. Gasparini, P. & Mantovani, M. S. M. Earth planet. Sci. Lett. (in the press).

  21. Hall, D. H. & Hajnal, Z. Seismol. Soc. Am. Bull. 63, 885 (1973).

    Google Scholar 

  22. Kanestrom, R. The Norwegian Geotraverse Project (ed Heier, K. S.) (Norwegian Science Council for Science and Humanities, Oslo, 1975).

    Google Scholar 

  23. Christensen, N. I. & Fountain, D. M. Geol. Soc. Am. Bull. 86, 227 (1975).

    Article  ADS  Google Scholar 

  24. Beloussov, V. V. The crust and Upper Mantle of the Continents (Izd. Nauka, Moscow, 1966).

    Book  Google Scholar 

  25. Smithson, S. B. & Brown, S. K. Earth planet. Sci. Lett. 35, 134 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Nagata, T. Rock magnetism (Maruzen, Tokyo, 1961).

  27. Roberti, N. & Scandone, R. Boll. Geofis. Teor. Appl. 17, 259 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GASPARINI, P., MANTOVANI, M., CORRADO, G. et al. Depth of curie temperature in continental shields: a compositional boundary?. Nature 278, 845–846 (1979). https://doi.org/10.1038/278845a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/278845a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing