Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations

Abstract

Marine ice-sheet collapse can contribute to rapid sea-level rise1. Today, the West Antarctic Ice Sheet contains an amount of ice equivalent to approximately six metres of sea-level rise, but most of the ice is in the slowly moving interior reservoir. A relatively small fraction of the ice sheet comprises several rapidly flowing ice streams which drain the ice to the sea. The evolution of this drainage system almost certainly governs the process of ice-sheet collapse2,3,4,5. The thick and slow-moving interior ice reservoir is generally fixed to the underlying bedrock while the ice streams glide over lubricated beds at velocities of up to several hundred metres per year. The source of the basal lubricant — a water-saturated till6,7 overlain by a water system8 — may be linked to the underlying geology. The West Antarctic Ice Sheet rests over a geologically complex region characterized by thin crust, high heat flows, active volcanism and sedimentary basins9,10,11,12,13,14,15,16. Here we use aerogeophysical measurements to constrain the geological setting of the onset of an active West Antarctic ice stream. The onset coincides with a sediment-filled basin incised by a steep-sided valley. This observation supports the suggestion5,17 that ice-stream dynamics — and therefore the response of the West Antarctice Ice Sheet to changes in climate — are strongly modulated by the underlying geology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the West Antarctic Ice Sheet.
Figure 2: Aerogeophysical maps and satellite images of the onset region.
Figure 3: Radar profiles.
Figure 4: Potential field modelling results and stacked profiles.

Similar content being viewed by others

References

  1. Fairbanks, R. G. A17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  2. MacAyeal, D. R. Irregular oscillations of the West Antarctic ice sheet. Nature 359, 29–35 (1992).

    Article  ADS  Google Scholar 

  3. MacAyeal, D. R. Binge/purge oscillations of the Laurentide ice sheet is a cause of the north Atlantic's Heinrich events. Paleoceanography 8(6), 775–784 (1993).

    Article  ADS  Google Scholar 

  4. Alley, R. B. & Whillans, I. M. Changes in the West Antarctic ice sheet. Science 254, 959–963 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Blankenship, D. D. et al. Active volcanism beneath the West Antarctic Ice Sheet and implications for ice-sheet stability. Nature 361, 526–529 (1993).

    Article  ADS  Google Scholar 

  6. Blankenship, D. D., Bentley, C. R., Rooney, S. T. & Alley, R. B. Till beneath ice stream B.1. Properties derived from seismic travel times. J. Geophys. Res. 9, 8903–8911 (1987).

    Article  ADS  Google Scholar 

  7. Engelhardt, H. Humphrey, N., Kamb, B. & Fahnestock, M. Physical conditions at the base of a fast moving Antarctic ice stream. Science 248, 57–59 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Engelhardt, H. & Kamb, B. Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. J. Glaciol. 43, 207–244 (1997).

    Article  ADS  Google Scholar 

  9. Dalziel, I. W. D. & Elliot, D. G. West Antarctica: problem child of Gondwanaland. Tectonics 1, 3–19 (1982).

    Article  ADS  Google Scholar 

  10. Behrendt, J. C. et al. The West Antarctic Rift System-A Review of Geophysical Investigations 67–112 (Antarctic Res. Ser. 53, Am. Geophys. Union, Washington DC, 1991).

    Google Scholar 

  11. Cooper, A. K., Davey, F. J. & Hinz, K. in Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.) 285–292 (Cambridge Univ. Press, 1991).

    Google Scholar 

  12. Davey, F. J. The Antarctic Continental Margin: Geology and Geophysics of the Western Ross Sea 1–16 (Circum-Pacific Council for Energy and Resources, Houston, 1987).

    Google Scholar 

  13. Robertson, J. D., Bentley, C. R., Clough, J. W. & Greischar, L. L. in Antarctic Geoscience 1083–1090 (IUGS B4, Univ. Wisconsin Press, Madison, Wisconsin, 1982).

    Google Scholar 

  14. Rose, K. E. Characteristics of ice flow in Marie Byrd Land, Antarctica. J. Glaciol. 24, 63–74 (1979).

    Article  ADS  Google Scholar 

  15. Ten Brink, U. S., Bannister, S., Beaudoin, B. C. & Stern, T. A. Geophysical investigations of the tectonic boundary between East and West Antarctica. Science 261, 45–50 (1993).

    Article  ADS  Google Scholar 

  16. Rooney, S. T., Blankenship, D. D., Bentley, C. R. & Alley, R. B. Till beneath ice stream B.2. Structure and continuity. J. Geophys. Res. 9(B9), 8913–8920 (1987).

    Article  ADS  Google Scholar 

  17. Retzlaff, R., Lord, N. & Bentley, C. R. Airborne-radar studies: Ice streams A, B and C, West Antarctica. J. Glaciol. 39(133), 495–506 (1993).

    Article  ADS  Google Scholar 

  18. Hodge, S. M. & Doppelhammer, S. Onset of streaming flow of ice streams. J. Geophys. Res. 101, 6669–6677 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Scambos, T. A. & Bindshadler, R. A. Ice flow at the confluence of two ice stream tributaries revealed by sequential satellite imagery. Ann. Glaciol. 17, 177–182 (1993).

    Article  ADS  Google Scholar 

  20. Bindschadler, R. A. & Vornberger, P. L. AVHRR imagery reveals Antarctic ice dynamics. Eos 71, 741–742 (1990).

    Article  ADS  Google Scholar 

  21. Anandakrishnan, S., Blankenship, D. D., Alley, R. B. & Stoffa, P. L. Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations. Nature 394, 62–65 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Shabtaie, S. & Bentley, C. R. Ice-thickness map of the West Antarctic ice streams by radar sounding. Ann. Glaciol. 11, 126–135 (1988).

    Article  ADS  Google Scholar 

  23. Drewry, D. J. Antarctica: Glaciological and Geophysical Folio (Cambridge Univ. Press, 1983).

    Google Scholar 

  24. Shabtaie, S. & Bentley, C. R. West Antarctic ice streams draining into the Ross ice shelf: configuration and mass balance. J. Geophys. Res. 92(B2), 1311–1336 (1987).

    Article  ADS  Google Scholar 

  25. Anandakrishnan, S. & Alley, R. B. Stagnation of ice stream C, West Antarctica by water piracy. Geophys. Res. Lett. 24, 265–268 (1997).

    Article  ADS  Google Scholar 

  26. Brozena, J. M. et al. CASERTZ 91-92: Airborne gravity and surface topography measurements. Antarc. J. US 28, 1–3 (1993).

    Google Scholar 

  27. Behrendt, J. C. et al. CASERTZ aeromagnetic data reveal late Cenozoic flood basalts in the West Antarctic rift system. Geology 22, 527–530 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Arko, M. Studinger and S. Kempf for assistance. This Letter was improved by contributions from G. Karner and C. Small. This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Bell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, R., Blankenship, D., Finn, C. et al. Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature 394, 58–62 (1998). https://doi.org/10.1038/27883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27883

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing