In conclusion, we have not detected any pulsations in the range $\sim 2-2,000 \mathrm{~s}$ from GCX, a region which is known to contain several point sources. However, a search for periodicities $<2 \mathrm{~s}$ and $>30 \mathrm{~min}$ would be valuable.
We thank the SAS 3 group for hospitality at MIT and, in particular, Dr John Doty and Lynn Cominsky. F.A.C. also thanks Richard Brenner of the California Institute of Technology for advice on FFT analysis. This work was supported by NASA grant NSG 5197.

Downs Laboratory of Physics, California Institute of Technology, Pasadena, California 91125
F. A. Córdova
G. P. GARMIRE
W. H. G. LEWIN

Center for Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received 29 January; accepted 21 February 1979.

1. Kellogg, E., Gursky, H., Murray, S., Tannanbaum, H. \& Giaconni, R. Astrophys. J. Lett. 169, L99 (1971).
2. Eyles, C. J., Skinner, G. K., Willmore, A. P. \& Rosenberg, F. D. Nature 257, 291 (1975).
3. Ariel V Group, Univ. Birmingham. IAU Circ. No. 2934 (1976).
4. Lewin, W. H. G. et al. Mon. Not. R. astr. Soc. 177, 83 (1976a).
5. Cruddace, R. G., Fritz, G., Shulman, S. \& Friedman, H. Astrophys. J. Lett. 222, L95 (1978),
6. Proctor, R. J., Skinner, G. K. \& Willmore, A. P. Mon. Not. R. astr. Soc. 185, 745 (1978).
7. Lewin, W. H. G. et al. Nature 267, 28 (1977).
8. Cominsky, L., van Paradijs, J. \& Lewin, W. G. H. (in preparation).
9. Li, F. K., Clark, G. \& Markert, T. Nature 275, 723 (1978).
10. Ives, J. C., Sanford, P. W. \& Bell-Burnell, S. J. Nature 254, 578 (1975).
11. Rosenberg, F. D., Eyles, C. J., Skinner, G. K. \& Willmore, A. P. Nature 256, 628 (1975).
12. Lewin, W. H. G. et al. Mon. Not. R. astr. Soc. 177, 93 (1976b).
13. Córdova, F., Garmire, G. \& Lewin, W. H. G. Final Tech. Rep. (NASA Grant NSG 5197, 1978).
14. Lewin, W. H. G. Proc. COSPAR Symp., Innsbruck (1978).
15. Flowers, E. \& Ruderman, M. Astrophys. J. 215, 302 (1977)

The angular size of the high-redshift quasar Q0000-398

THE optically selected quasar ${ }^{1}$ Q0000-398 has a redshift ${ }^{2}$ $z=2.827$. This quasar has been identified with a faint double radio source whose angular extent is $134 \pm 40 \mathrm{arcs}$. As all known high-redshift radio-selected quasars have much smaller angular sizes, it has been suggested that the upper envelope of the angular size-redshift diagram of radio quasars is depressed by an anticorrelation of linear size and radio luminosity ${ }^{3}$. We show here, first that the radio source associated with $\mathrm{Q} 0000-398$ is compact and centred on the optical quasar, and second that there is no evidence in our data on other quasars for the suggested anticorrelation.

We observed Q0000-398 at $1,465 \mathrm{MHz}$ with the partially completed VLA during 16-18 June 1978 as part of a larger programme to study radio emission from optically selected quasars. Nine scans of Q0000-398 were made at uniform intervals within 2 h of transit. All 15 pairs of the six antennas were correlated; baselines from 3,500 to 52,000 wavelengths were available. The synthesised beam is shown in Fig. 1a. The 'clean' map of Q0000-398, restored with an 18 by 3 arcs elliptical gaussian beam, is shown in Fig. $1 b$.

The only radio source in the field is at 1950.0 position $\alpha=000030.29 \pm 0.02, \delta=-394847.6 \pm 0.8$. It is unresolved (<6 by 1 arcs) and has a $1,465 \mathrm{MHz}$ flux density of $14 \pm 2 \mathrm{mJy}$. The optical position of Q0000-398, measured from the Whiteoak extension of the National Geographic-Palomar Observatory Sky Survey print, is $\alpha=000030.26 \pm 0.13, \delta=$ -394849.6 ± 1.5. Thus we identify Q0000-398 with a single compact radio source centred on the optical quasar. M. R.

Fig. $1 a$, Synthesised beam for the $1,465 \mathrm{MHz}$ VLA observations of $\mathrm{Q} 0000-398$. b, The $1,465 \mathrm{MHz}$ VLA map of $\mathrm{Q} 0000-398$. Negative contours are indicated by broken lines.

Gearhart (personal communication) has suggested that marginal observing weather coupled with the low elevation of the source may be responsible for the large angular size observed at $2,695 \mathrm{MHz}$ with the NRAO three-element interferometer.

Our preliminary $1,465 \mathrm{MHz}$ VLA maps of other high-redshift quasars indicate that the faint radio sources sometimes associated with optically selected quasars do not have larger angular sizes than the more luminous radio-selected sources.
J.J.C. is an Alfred P. Sloan Foundation Fellow; the National Radio Astronomy Observatory is operated under contract with the NSF.

J. J. CONDON
MARLENE A. Buckman
\section*{National Radio Astronomy Observatory, Edgemont Road,

Charlottesville, Virginia 22901}

Malcolm G. Smith
Anglo-Australian Observatory, PO Box 296
Epping, New South Wales 2121
Australia

Received 5 February; accepted 15 February 1979.

1. Smith, M. G. Astrophys. J. Lett. 206, L125-L127 (1976).
2. Osmer, P. S. \& Smith, M. G. Astrophys. J. 210, 267-276 (1976).
3. Gearhart, M. R. \& Pacht, E. Nature 266, 819-822 (1977).
