Efficiency of protein synthesis after fertilisation of sea urchin eggs

Abstract

ELUCIDATION of the mechanisms involved in the cytoplasmic control of protein synthesis is essential for an understanding of the initiation of embryogenesis. On fertilisation, echinoid eggs increase their rate of protein synthesis many-fold, independent of any increase in ribosomal or mRNA synthesis1–4. Within 2 h of fertilisation the number of ribosomes in polyribosomes increases about 25-fold without any change in the size distribution of poly ribosomes5,6. In addition, the polyribosome number doubles again by gastrulation. However, the total rate of protein synthesis increases 113-fold from egg to gastrulation7. The discrepancy between the number of ribosomes recruited into polyribosomes, an increase of ≈50 fold, and the total increase in the rate of protein synthesis, a 113-fold increase, could be explained if there were also an increase in the rate of movement of ribosomes along each message (elongation) and/or an increase in the rate of release of completed peptides (termination). We report here that the translational rate is increased about 2.5-fold after fertilisation in the sea urchin, Strongylocentrotus purpuratus. The average transit time (elongation plus termination time for an average-sized peptide) was measured for these eggs and several stages of embryos.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Denny, P. C. & Tyler, A. Biochem. biophys. Res. Commun. 14, 245–249 (1964).

    CAS  Article  Google Scholar 

  2. 2

    Gross, P. R., Malkin, L. I. & Moyer, W. A. Proc. natn. Acad. Sci. U.S.A. 51, 407–414 (1964).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Jenkins, N. A., Taylor, M. & Raff, R. A. Proc. natn. Acad. Sci. U.S.A. 70, 3287–3291 (1973).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Jenkins, N. A., Kaumeyer, J. F., Young, E. M. & Raff, R. A. Devl Biol. 63, 279–298 (1978).

    CAS  Article  Google Scholar 

  5. 5

    Humphreys, T. Devl Biol. 26, 201–208 (1971).

    CAS  Article  Google Scholar 

  6. 6

    Infante, A. A. & Nemer, M. Proc. natn. Acad. Sci. U.S.A. 58, 681–688 (1967).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Regier, J. C. & Kafatos, F. C. Devl Biol. 57, 270–283 (1977).

    CAS  Article  Google Scholar 

  8. 8

    Fan, J. & Penman, S. J. molec. Biol. 50, 655–670 (1970).

    CAS  Article  Google Scholar 

  9. 9

    Palmiter, R. D. J. biol. Chem. 247, 6770–6780 (1972).

    CAS  PubMed  Google Scholar 

  10. 10

    Showman, R. M. & Foerder, C. A. Expl Cell Res. (in the press).

  11. 11

    Bensadoun, A. & Weinstein, D. Analyt. Biochem. 70, 241–250 (1976).

    CAS  Article  Google Scholar 

  12. 12

    Slabaugh, R. C. & Morris, A. J. J. biol. Chem. 245, 6182–6189 (1970).

    CAS  PubMed  Google Scholar 

  13. 13

    Georgiev, G. P. & Samarina, O. P. Adv. Cell Biol. 2, 47–110 (1971).

    CAS  Article  Google Scholar 

  14. 14

    Spirin, A. S. Curr. Topics dev. Biol. 1, 1–38 (1966).

    CAS  Article  Google Scholar 

  15. 15

    Leffak, I. M., Grainger, R. & Weintraub, H. Cell 12, 837–845 (1977).

    CAS  Article  Google Scholar 

  16. 16

    Mitchinson, J. M. & Cummins, J. E. J. Cell Sci. 1, 35–47 (1966).

    Google Scholar 

  17. 17

    Fry, B. J. & Gross, P. R. Devl Biol. 21, 125–146 (1970).

    CAS  Article  Google Scholar 

  18. 18

    Brandhorst, B. P. Devl Biol. 52, 310–317 (1976).

    CAS  Article  Google Scholar 

  19. 19

    Humphreys, T. Devl Biol. 20, 435–458 (1969).

    CAS  Article  Google Scholar 

  20. 20

    Brandis, J. W. & Raff, R. A. Devl Biol. 67, 99–113 (1978).

    CAS  Article  Google Scholar 

  21. 21

    Craig, N. J. cell Physiol. 87, 157–166 (1975).

    CAS  Article  Google Scholar 

  22. 22

    Craig, N. Cell 4, 329–335 (1975).

    CAS  Article  Google Scholar 

  23. 23

    Felicetti, L., Metafora, S., Gambino, R. & Di Matteo, G. Cell. Differentiation 1, 265–277 (1972).

    CAS  Article  Google Scholar 

  24. 24

    Nemer, M. Cell 6, 559–570 (1975).

    CAS  Article  Google Scholar 

  25. 25

    Metafora, S., Felicetti, L. & Gambino, R. Proc. natn. Acad. Sci. U.S.A. 68, 600–604 (1971).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Hille, M. B. Nature 249, 556–558 (1974).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Filipowicz, W., Sierra, J. M. & Ochoa, S. Proc. natn. Acad. Sci. U.S.A. 72, 3947–3951 (1975).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Laskey, R. A., Mills, A. D., Gurdon, J. B. & Partington, G. A. Cell 11, 345–351 (1977).

    CAS  Article  Google Scholar 

  29. 29

    Sconzo, G. & Giudice, G. Biochem. biophys. Acta 199, 435–440 (1970).

    CAS  PubMed  Google Scholar 

  30. 30

    Hille, M. B. and Albers, A. A. J. Cell. Biol. 79, 166a (1978).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

HILLE, M., ALBERS, A. Efficiency of protein synthesis after fertilisation of sea urchin eggs. Nature 278, 469–471 (1979). https://doi.org/10.1038/278469a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.