Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetically mediated superconductivity in heavy fermion compounds

Abstract

In a conventional superconductor, the binding of electrons into the paired states that collectively carry the supercurrent is mediated by phonons — vibrations of the crystal lattice. Here we argue that, in the case of the heavy fermion superconductors CePd2Si2 and CeIn3, the charge carriers are bound together in pairs by magnetic spin–spin interactions. The existence of magnetically mediated superconductivity in these compounds could help shed light on the question of whether magnetic interactions are relevant for describing the superconducting and normal-state properties of other strongly correlated electron systems, perhaps including the high-temperature copper oxide superconductors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Possible temperature–density phase diagram of a pure metal in which magnetic order is quenched gradually with increasing lattice density.
Figure 2: Temperature–pressure phase diagram of high-purity single-crystal CePd2Si2.
Figure 3: Temperature–pressure phase diagram of high-purity single-crystal CeIn3.
Figure 4: The positions and spin alignments of the Ce atoms in the unit cells of the two materials studied.

References

  1. 1

    Gilbert, W. De Magnete, Magneticisque Corporibus et de Magno Magnets Tellure (London 1600).

    Google Scholar 

  2. 2

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. 3

    Brinkman, W. F., Serene, J. W. & Anderson, P. W. Spin-fluctuation stabilization of anisotropic superfluid states. Phys. Rev. A 10, 2386–2394 (1974).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Leggett, A. J. Atheoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331–414 (1975).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Fay, D. & Appel, J. Coexistence of p-state superconductivity and itinerant ferromagnetism. Phys. Rev. B 22, 3173–3182 (1980).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Millis, A. J., Sachdev, S. & Varma, C. M. Inelastic-scattering and pair breaking in anisotropic and isotropic superconductors. Phys. Rev. B 37, 4975–4986 (1988).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Bickers, N. E., Scalapino, D. J. & White, S. R. Conserving approximations for strongly correlated electron-systems — Bethe–Salpeter equation and dynamics for the two-dimensional Hubbard model. Phys. Rev. Lett. 62, 961–964 (1989).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Landau, L. D. in Collected Papers Ch. 90, 91 (Gordon & Breach, New York, Pergamon, Oxford, 1965).

    Google Scholar 

  9. 9

    Anderson, P. W. Theory of Superconductivity of High-TcCuprate Superconductors (Princeton Univ. Press, 1997).

    Google Scholar 

  10. 10

    Lonzarich, G. G. Electron (ed. Springford, M.) Ch. 6 (Cambridge Univ. Press, 1997).

    Google Scholar 

  11. 11

    Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).

    Google Scholar 

  12. 12

    Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Millis, A. J. Effect of a non-zero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Moriya, T. & Takimoto, T. Anomalous properties around magnetic instability in heavy-electron systems. J. Phys. Soc. Jpn. 64, 960–969 (1995).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Berk, N. F. & Schrieffer, J. R. Effect of ferromagnetic spin correlations on superconductivity. Phys. Rev. Lett. 17, 433–435 (1966).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Gladstone, G., Jensen, M. A. & Schrieffer, J. R. in Superconductivity (ed. Parks, R. D.) Vol. 2 (Dekker, New York, 1969).

    Google Scholar 

  17. 17

    Pfleiderer, C., McMullan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330–8338 (1997).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Ishikawa, Y., Noda, Y., Uemura, Y. J., Majkrzak, C. F. & Shirane, G. Paramagnetic spin fluctuations in the weak itinerant-electron ferromagnet MnSi. Phys. Rev. B 31, 5884–5893 (1985).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Lonzarich, G. G. & Taillefer, L. J. Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals. Phys. C: Solid State Phys. 18, 4339–4371 (1985).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Lonzarich, G. G. The magnetic equation of state and heat capacity in weak itinerant ferromagnets. J.Magn. Magn. Mater. 54–57;, 612–616 (1986).

    ADS  Article  Google Scholar 

  21. 21

    Grosche, F. M., Pfleiderer, C., McMullan, G. J., Lonzarich, G. G. & Bernhoeft, N. R. Critical behaviour of ZrZn2. Physica B 206 & 207, 20–22 (1995).

    CAS  Article  Google Scholar 

  22. 22

    Bernhoeft, N. R., Lonzarich, G. G., Mitchell, P. W. & McK. Paul, D. Magnetic excitations in Ni3Al at low energies and long wavelengths. Phys. Rev. B 28, 422–424 (1983).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Bernhoeft, N. R., Law, S. A., Lonzarich, G. G. & McK. Paul, D. Magnetic excitations in ZrZn2 at low energies and long wavelengths. Physica Scripta 38, 191–193 (1988).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Lonzarich, G. G., Bernhoeft, N. R. & McK. Paul, D. Spin density fluctuations in magnetic metals. Physica B 156 & 157, 699–705 (1989).

    Article  Google Scholar 

  25. 25

    Steglich, F. et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (1979).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Razafimandimby, H., Fulde, P. & Keller, J. On the theory of superconductivity in Kondo lattice systems. Z. Phys. B-Cond. Matter 54, 111–120 (1984).

    CAS  Article  Google Scholar 

  27. 27

    Cox, D. L. Selection-rules for 2-channel Kondo models of U4+ and Ce3+ ions in metals. Physica B 188, 312–316 (1993).

    ADS  Article  Google Scholar 

  28. 28

    Jaccard, D., Behnia, K. & Sierro, J. Pressure-induced heavy fermion superconductivity of CeCu2Ge2. Phys. Lett. 163A, 475–480 (1992).

    ADS  Article  Google Scholar 

  29. 29

    Nakamura, S., Moriya, T. & Ueda, K. Spin fluctuation-induced superconductivity in two- and three-dimensional systems. J. Phys. Soc. Jpn. 65, 4026–4033 (1996).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Grier, B. H., Lawrence, J. M., Murgai, V. & Parks, R. D. Magnetic ordering in CeM2Si2(M = Ag, Au, Pd, Rh) compounds as studied by neutron diffraction. Phys. Rev. B 29, 2664–2672 (1984).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Grier, B. H., Lawrence, J. M., Horn, S. & Thompson, J. D. Inelastic magnetic neutron scattering in CeT2Si2(T = Au, Pd, Ru or Pt): crystal fields and quasi-elastic scattering. J. Phys. C: Solid State Phys. 21, 1099–1110 (1988).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Hippert, F., Hennion, B., Mignot, J.-M. & Lejay, P. Magnetic excitations in the antiferromagnetic Kondo compound CePd2Si2. J. Magn. Magn. Mater. 108, 177–178 (1992).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Thompson, J. D., Parks, R. D. & Borges, H. Effect of pressure on the Néel temperature of Kondo-lattice systems. J. Magn. Magn. Mater. 54–57;, 377–378 (1986).

    ADS  Article  Google Scholar 

  34. 34

    Lawrence, J. Speculations on the critical behavior of reduced moment anti-ferromagnetic cerium compounds. J. Appl. Phys. 53, 2117–2121 (1982).

    ADS  CAS  Article  Google Scholar 

  35. 35

    Lassailly, Y., Burke, S. K. & Flouquet, J. Strong Q-dependence of the magnetic susceptibility of CeIn3. J.Phys. C: Solid State Phys. 18, 5737–5747 (1985).

    ADS  CAS  Article  Google Scholar 

  36. 36

    Flouquet, J. et al. Magnetic instability in Ce heavy fermion compounds. J. Magn. Magn. Mater. 90 & 91, 377–382 (1990).

    Article  Google Scholar 

  37. 37

    Grosche, F. M., Julian, S. R., Mathur, N. D. & Lonzarich, G. G. Magnetic and superconducting phases in CePd2Si2. Physica B 224, 50–52 (1996).

    ADS  Article  Google Scholar 

  38. 38

    Julian, S. R. et al. The normal states of magnetic d and magnetic f transition metals. J. Phys. Cond. Matter 8, 9675–9688 (1996).

    ADS  CAS  Article  Google Scholar 

  39. 39

    Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).

    ADS  CAS  Article  Google Scholar 

  40. 40

    Walker, I. R., Grosche, F. M., Freye, D. M. & Lonzarich, G. G. The normal and superconducting states of CeIn3 and CePd2Si2 on the border of antiferromagnetic order. Physica C 282, 303–306 (1997).

    ADS  Article  Google Scholar 

  41. 41

    Grosche, F. M. et al. Superconductivity and anomalous normal states in cerium heavy fermion compounds. Preprint.

  42. 42

    Altshuler, B. L., Ioffe, L. B. & Millis, A. J. Low-energy properties of fermions with singular interactions. Phys. Rev. B 50, 14048–14064 (1994).

    ADS  CAS  Article  Google Scholar 

  43. 43

    Hlubina, R. & Rice, T. M. Resistivity as a function of temperature for models with hot-spots on the fermi-surface. Phys. Rev. B 51, 9253–9260 (1995).

    ADS  CAS  Article  Google Scholar 

  44. 44

    Movshovich, R. et al. Superconductivity in heavy-fermion CeRh2Si2. Phys. Rev. B 53, 8241–8244 (1996).

    ADS  CAS  Article  Google Scholar 

  45. 45

    Vargoz, E., Link, P. & Jaccard, D. CeCu2: A new heavy-fermion superconductor near 6 GPa. Physica B 230, 182–185 (1997).

    ADS  Article  Google Scholar 

  46. 46

    Grosche, F. M. et al. Superconductivity and anomalous normal state in CePd2Si2 and CeNi2Ge2. Preprint aps 1997 aug 27_001 available at (http://publish.aps.org/eprint/).

  47. 47

    Steglich, F. et al. Are heavy-fermion metals Fermi liquids? Z. Phys. B 103, 235–242 (1997).

    ADS  CAS  Article  Google Scholar 

  48. 48

    Ott, H. R., Rudigier, H., Fisk, Z. & Smith, J. L. UBe13 — an unconventional actinide superconductor. Phys. Rev. Lett. 50, 1595–1598 (1983).

    ADS  CAS  Article  Google Scholar 

  49. 49

    Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    ADS  CAS  Article  Google Scholar 

  50. 50

    Fisk, Z. et al. Heavy-electron metals: new highly correlated states of matter. Science 239, 33–42 (1988).

    ADS  CAS  Article  Google Scholar 

  51. 51

    Grewe, N. & Steglich, F. in Handbook of the Physics and Chemistry of the Rare Earths (eds Gschneidner, K. A. Jr. & Eyring, L. L.) 14, 343 (Elsevier, Amsterdam, 1991).

    Google Scholar 

  52. 52

    Cox, D. L. & Maple, M. B. Electronic pairing in exotic superconductors. Phys. Today 40, 32–40 (1995).

    Article  Google Scholar 

  53. 53

    Norman, M. R. Hund rule theory for heavy-fermion superconductors. Phys. Rev. Lett. 72, 2077–2080 (1994).

    ADS  CAS  Article  Google Scholar 

  54. 54

    Jerome, D. Organic Conductors (Dekker, New York, 1994).

    Google Scholar 

  55. 55

    Ishiguro, T. & Yamaji, K. in Organic Conductors Ch. 3 (Springer, Berlin, 1990).

    Google Scholar 

  56. 56

    Fukuyama, H. in The Review of High Pressure Science and Technology (in the press).

  57. 57

    Levin, R. & Valls, O. T. Strong-coupling theory of superfluid transition temperatures for paramagnon models: application to 3He. Phys. Rev. B 17, 191–200 (1978).

    ADS  CAS  Article  Google Scholar 

  58. 58

    Pines, D. Spin excitation and superconductivity in cuprate oxide and heavy electron superconductors. Physica B 163, 78–88 (1990).

    ADS  CAS  Article  Google Scholar 

  59. 59

    Moriya, T., Takahashi, Y. & Ueda, K. Antiferromagnetic spin fluctuations and superconductivity in 2-dimensional metals — a possible model for high-Tc oxides. J. Phys. Soc. Jpn. 52, 2905–2915 (1990).

    ADS  Article  Google Scholar 

  60. 60

    Monthoux, P., Balatsky, A. V. & Pines, D. Towards a theory of high temperature superconductivity in the antiferromagnetically correlated cuprate oxide. Phys. Rev. Lett. 67, 3448–3451 (1991).

    ADS  CAS  Article  Google Scholar 

  61. 61

    Bulut, N., Hone, D. W., Scalapino, D. J. & Bickers, N. E. Knight-shifts and nuclear-spin-relaxation rates for 2-dimensional models of CuO2. Phys. Rev. B 41, 1797–1811 (1990).

    ADS  CAS  Article  Google Scholar 

  62. 62

    Zhang, S. C. Aunified theory based on SO(5) symmetry of superconductivity and antiferromagnetism. Science 275, 1089–1096 (1997).

    MathSciNet  CAS  Article  Google Scholar 

  63. 63

    Schröder, A., Aeppli, G., Bucher, E., Ramazashvili, R. & Coleman, P. Scaling of magnetic fluctuations near a quantum phase transition. Phys. Rev. Lett.(in the press).

  64. 64

    von Löhneysen, H. et al. Non-Fermi-liquid behaviour in a heavy fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262–3265 (1994).

    ADS  Article  Google Scholar 

  65. 65

    Hirsch, J. E. Attractive interaction and pairing in fermion systems with strong on-site repulsion. Phys. Rev. Lett. 54, 1317–1320 (1985).

    ADS  CAS  Article  Google Scholar 

  66. 66

    Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986).

    ADS  CAS  Article  Google Scholar 

  67. 67

    Scalapino, D. J., Loh, E. J & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

    ADS  CAS  Article  Google Scholar 

  68. 68

    Schrieffer, J. R., Wen, X. G. & Zhang, S. C. Spin-bag mechanism of high-temperature superconductivity. Phys. Rev. Lett. 60, 944–947 (1988).

    ADS  CAS  Article  Google Scholar 

  69. 69

    Furukawa, N. & Rice, T. M. Instability of a Landau-Fermi liquid as the Mott insulator is approached. J. Phys.: Condens. Matter 10, L281–L389 (1998).

    Google Scholar 

Download references

Acknowledgements

We thank S. V. Brown, P. Agarwal, F. V. Carter, P. Coleman, J. Flouquet, C. D. Frost, I.Gray, D. Khmelnitskii, S.J. S. Lister, P. B. Littlewood, A. P. Mackenzie, G. J. McMullan, A. J. Millis, P.Monthoux, C.Pfleiderer, E. Pugh, S. S. Saxena, A. J. Schofield, M. J. Steiner and A. Tsvelik. This research has been supported partly by the Cambridge Research Centre in Superconductivity, headed by Y. Liang, by the EPSRC of the UK, by the EU, and by the Cambridge Newton Trust.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. G. Lonzarich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mathur, N., Grosche, F., Julian, S. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998). https://doi.org/10.1038/27838

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing