Magnetically mediated superconductivity in heavy fermion compounds

Article metrics

Abstract

In a conventional superconductor, the binding of electrons into the paired states that collectively carry the supercurrent is mediated by phonons — vibrations of the crystal lattice. Here we argue that, in the case of the heavy fermion superconductors CePd2Si2 and CeIn3, the charge carriers are bound together in pairs by magnetic spin–spin interactions. The existence of magnetically mediated superconductivity in these compounds could help shed light on the question of whether magnetic interactions are relevant for describing the superconducting and normal-state properties of other strongly correlated electron systems, perhaps including the high-temperature copper oxide superconductors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Possible temperature–density phase diagram of a pure metal in which magnetic order is quenched gradually with increasing lattice density.
Figure 2: Temperature–pressure phase diagram of high-purity single-crystal CePd2Si2.
Figure 3: Temperature–pressure phase diagram of high-purity single-crystal CeIn3.
Figure 4: The positions and spin alignments of the Ce atoms in the unit cells of the two materials studied.

References

  1. 1

    Gilbert, W. De Magnete, Magneticisque Corporibus et de Magno Magnets Tellure (London 1600).

  2. 2

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

  3. 3

    Brinkman, W. F., Serene, J. W. & Anderson, P. W. Spin-fluctuation stabilization of anisotropic superfluid states. Phys. Rev. A 10, 2386–2394 (1974).

  4. 4

    Leggett, A. J. Atheoretical description of the new phases of liquid 3He. Rev. Mod. Phys. 47, 331–414 (1975).

  5. 5

    Fay, D. & Appel, J. Coexistence of p-state superconductivity and itinerant ferromagnetism. Phys. Rev. B 22, 3173–3182 (1980).

  6. 6

    Millis, A. J., Sachdev, S. & Varma, C. M. Inelastic-scattering and pair breaking in anisotropic and isotropic superconductors. Phys. Rev. B 37, 4975–4986 (1988).

  7. 7

    Bickers, N. E., Scalapino, D. J. & White, S. R. Conserving approximations for strongly correlated electron-systems — Bethe–Salpeter equation and dynamics for the two-dimensional Hubbard model. Phys. Rev. Lett. 62, 961–964 (1989).

  8. 8

    Landau, L. D. in Collected Papers Ch. 90, 91 (Gordon & Breach, New York, Pergamon, Oxford, 1965).

  9. 9

    Anderson, P. W. Theory of Superconductivity of High-TcCuprate Superconductors (Princeton Univ. Press, 1997).

  10. 10

    Lonzarich, G. G. Electron (ed. Springford, M.) Ch. 6 (Cambridge Univ. Press, 1997).

  11. 11

    Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).

  12. 12

    Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

  13. 13

    Millis, A. J. Effect of a non-zero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

  14. 14

    Moriya, T. & Takimoto, T. Anomalous properties around magnetic instability in heavy-electron systems. J. Phys. Soc. Jpn. 64, 960–969 (1995).

  15. 15

    Berk, N. F. & Schrieffer, J. R. Effect of ferromagnetic spin correlations on superconductivity. Phys. Rev. Lett. 17, 433–435 (1966).

  16. 16

    Gladstone, G., Jensen, M. A. & Schrieffer, J. R. in Superconductivity (ed. Parks, R. D.) Vol. 2 (Dekker, New York, 1969).

  17. 17

    Pfleiderer, C., McMullan, G. J., Julian, S. R. & Lonzarich, G. G. Magnetic quantum phase transition in MnSi under hydrostatic pressure. Phys. Rev. B 55, 8330–8338 (1997).

  18. 18

    Ishikawa, Y., Noda, Y., Uemura, Y. J., Majkrzak, C. F. & Shirane, G. Paramagnetic spin fluctuations in the weak itinerant-electron ferromagnet MnSi. Phys. Rev. B 31, 5884–5893 (1985).

  19. 19

    Lonzarich, G. G. & Taillefer, L. J. Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals. Phys. C: Solid State Phys. 18, 4339–4371 (1985).

  20. 20

    Lonzarich, G. G. The magnetic equation of state and heat capacity in weak itinerant ferromagnets. J.Magn. Magn. Mater. 54–57;, 612–616 (1986).

  21. 21

    Grosche, F. M., Pfleiderer, C., McMullan, G. J., Lonzarich, G. G. & Bernhoeft, N. R. Critical behaviour of ZrZn2. Physica B 206 & 207, 20–22 (1995).

  22. 22

    Bernhoeft, N. R., Lonzarich, G. G., Mitchell, P. W. & McK. Paul, D. Magnetic excitations in Ni3Al at low energies and long wavelengths. Phys. Rev. B 28, 422–424 (1983).

  23. 23

    Bernhoeft, N. R., Law, S. A., Lonzarich, G. G. & McK. Paul, D. Magnetic excitations in ZrZn2 at low energies and long wavelengths. Physica Scripta 38, 191–193 (1988).

  24. 24

    Lonzarich, G. G., Bernhoeft, N. R. & McK. Paul, D. Spin density fluctuations in magnetic metals. Physica B 156 & 157, 699–705 (1989).

  25. 25

    Steglich, F. et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (1979).

  26. 26

    Razafimandimby, H., Fulde, P. & Keller, J. On the theory of superconductivity in Kondo lattice systems. Z. Phys. B-Cond. Matter 54, 111–120 (1984).

  27. 27

    Cox, D. L. Selection-rules for 2-channel Kondo models of U4+ and Ce3+ ions in metals. Physica B 188, 312–316 (1993).

  28. 28

    Jaccard, D., Behnia, K. & Sierro, J. Pressure-induced heavy fermion superconductivity of CeCu2Ge2. Phys. Lett. 163A, 475–480 (1992).

  29. 29

    Nakamura, S., Moriya, T. & Ueda, K. Spin fluctuation-induced superconductivity in two- and three-dimensional systems. J. Phys. Soc. Jpn. 65, 4026–4033 (1996).

  30. 30

    Grier, B. H., Lawrence, J. M., Murgai, V. & Parks, R. D. Magnetic ordering in CeM2Si2(M = Ag, Au, Pd, Rh) compounds as studied by neutron diffraction. Phys. Rev. B 29, 2664–2672 (1984).

  31. 31

    Grier, B. H., Lawrence, J. M., Horn, S. & Thompson, J. D. Inelastic magnetic neutron scattering in CeT2Si2(T = Au, Pd, Ru or Pt): crystal fields and quasi-elastic scattering. J. Phys. C: Solid State Phys. 21, 1099–1110 (1988).

  32. 32

    Hippert, F., Hennion, B., Mignot, J.-M. & Lejay, P. Magnetic excitations in the antiferromagnetic Kondo compound CePd2Si2. J. Magn. Magn. Mater. 108, 177–178 (1992).

  33. 33

    Thompson, J. D., Parks, R. D. & Borges, H. Effect of pressure on the Néel temperature of Kondo-lattice systems. J. Magn. Magn. Mater. 54–57;, 377–378 (1986).

  34. 34

    Lawrence, J. Speculations on the critical behavior of reduced moment anti-ferromagnetic cerium compounds. J. Appl. Phys. 53, 2117–2121 (1982).

  35. 35

    Lassailly, Y., Burke, S. K. & Flouquet, J. Strong Q-dependence of the magnetic susceptibility of CeIn3. J.Phys. C: Solid State Phys. 18, 5737–5747 (1985).

  36. 36

    Flouquet, J. et al. Magnetic instability in Ce heavy fermion compounds. J. Magn. Magn. Mater. 90 & 91, 377–382 (1990).

  37. 37

    Grosche, F. M., Julian, S. R., Mathur, N. D. & Lonzarich, G. G. Magnetic and superconducting phases in CePd2Si2. Physica B 224, 50–52 (1996).

  38. 38

    Julian, S. R. et al. The normal states of magnetic d and magnetic f transition metals. J. Phys. Cond. Matter 8, 9675–9688 (1996).

  39. 39

    Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).

  40. 40

    Walker, I. R., Grosche, F. M., Freye, D. M. & Lonzarich, G. G. The normal and superconducting states of CeIn3 and CePd2Si2 on the border of antiferromagnetic order. Physica C 282, 303–306 (1997).

  41. 41

    Grosche, F. M. et al. Superconductivity and anomalous normal states in cerium heavy fermion compounds. Preprint.

  42. 42

    Altshuler, B. L., Ioffe, L. B. & Millis, A. J. Low-energy properties of fermions with singular interactions. Phys. Rev. B 50, 14048–14064 (1994).

  43. 43

    Hlubina, R. & Rice, T. M. Resistivity as a function of temperature for models with hot-spots on the fermi-surface. Phys. Rev. B 51, 9253–9260 (1995).

  44. 44

    Movshovich, R. et al. Superconductivity in heavy-fermion CeRh2Si2. Phys. Rev. B 53, 8241–8244 (1996).

  45. 45

    Vargoz, E., Link, P. & Jaccard, D. CeCu2: A new heavy-fermion superconductor near 6 GPa. Physica B 230, 182–185 (1997).

  46. 46

    Grosche, F. M. et al. Superconductivity and anomalous normal state in CePd2Si2 and CeNi2Ge2. Preprint aps 1997 aug 27_001 available at (http://publish.aps.org/eprint/).

  47. 47

    Steglich, F. et al. Are heavy-fermion metals Fermi liquids? Z. Phys. B 103, 235–242 (1997).

  48. 48

    Ott, H. R., Rudigier, H., Fisk, Z. & Smith, J. L. UBe13 — an unconventional actinide superconductor. Phys. Rev. Lett. 50, 1595–1598 (1983).

  49. 49

    Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

  50. 50

    Fisk, Z. et al. Heavy-electron metals: new highly correlated states of matter. Science 239, 33–42 (1988).

  51. 51

    Grewe, N. & Steglich, F. in Handbook of the Physics and Chemistry of the Rare Earths (eds Gschneidner, K. A. Jr. & Eyring, L. L.) 14, 343 (Elsevier, Amsterdam, 1991).

  52. 52

    Cox, D. L. & Maple, M. B. Electronic pairing in exotic superconductors. Phys. Today 40, 32–40 (1995).

  53. 53

    Norman, M. R. Hund rule theory for heavy-fermion superconductors. Phys. Rev. Lett. 72, 2077–2080 (1994).

  54. 54

    Jerome, D. Organic Conductors (Dekker, New York, 1994).

  55. 55

    Ishiguro, T. & Yamaji, K. in Organic Conductors Ch. 3 (Springer, Berlin, 1990).

  56. 56

    Fukuyama, H. in The Review of High Pressure Science and Technology (in the press).

  57. 57

    Levin, R. & Valls, O. T. Strong-coupling theory of superfluid transition temperatures for paramagnon models: application to 3He. Phys. Rev. B 17, 191–200 (1978).

  58. 58

    Pines, D. Spin excitation and superconductivity in cuprate oxide and heavy electron superconductors. Physica B 163, 78–88 (1990).

  59. 59

    Moriya, T., Takahashi, Y. & Ueda, K. Antiferromagnetic spin fluctuations and superconductivity in 2-dimensional metals — a possible model for high-Tc oxides. J. Phys. Soc. Jpn. 52, 2905–2915 (1990).

  60. 60

    Monthoux, P., Balatsky, A. V. & Pines, D. Towards a theory of high temperature superconductivity in the antiferromagnetically correlated cuprate oxide. Phys. Rev. Lett. 67, 3448–3451 (1991).

  61. 61

    Bulut, N., Hone, D. W., Scalapino, D. J. & Bickers, N. E. Knight-shifts and nuclear-spin-relaxation rates for 2-dimensional models of CuO2. Phys. Rev. B 41, 1797–1811 (1990).

  62. 62

    Zhang, S. C. Aunified theory based on SO(5) symmetry of superconductivity and antiferromagnetism. Science 275, 1089–1096 (1997).

  63. 63

    Schröder, A., Aeppli, G., Bucher, E., Ramazashvili, R. & Coleman, P. Scaling of magnetic fluctuations near a quantum phase transition. Phys. Rev. Lett.(in the press).

  64. 64

    von Löhneysen, H. et al. Non-Fermi-liquid behaviour in a heavy fermion alloy at a magnetic instability. Phys. Rev. Lett. 72, 3262–3265 (1994).

  65. 65

    Hirsch, J. E. Attractive interaction and pairing in fermion systems with strong on-site repulsion. Phys. Rev. Lett. 54, 1317–1320 (1985).

  66. 66

    Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986).

  67. 67

    Scalapino, D. J., Loh, E. J & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

  68. 68

    Schrieffer, J. R., Wen, X. G. & Zhang, S. C. Spin-bag mechanism of high-temperature superconductivity. Phys. Rev. Lett. 60, 944–947 (1988).

  69. 69

    Furukawa, N. & Rice, T. M. Instability of a Landau-Fermi liquid as the Mott insulator is approached. J. Phys.: Condens. Matter 10, L281–L389 (1998).

Download references

Acknowledgements

We thank S. V. Brown, P. Agarwal, F. V. Carter, P. Coleman, J. Flouquet, C. D. Frost, I.Gray, D. Khmelnitskii, S.J. S. Lister, P. B. Littlewood, A. P. Mackenzie, G. J. McMullan, A. J. Millis, P.Monthoux, C.Pfleiderer, E. Pugh, S. S. Saxena, A. J. Schofield, M. J. Steiner and A. Tsvelik. This research has been supported partly by the Cambridge Research Centre in Superconductivity, headed by Y. Liang, by the EPSRC of the UK, by the EU, and by the Cambridge Newton Trust.

Author information

Correspondence to G. G. Lonzarich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mathur, N., Grosche, F., Julian, S. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998) doi:10.1038/27838

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.