Crystal structure of a eukaryotic initiator tRNA

Abstract

OUR understanding of the molecular structure–function relationship in tRNA rests mainly on three types of information. First, on the common sequence patterns which have emerged from careful examination of many primary structures1–3; second, a wide variety of spectral and other physical and chemical results must be accounted for by the molecular structure4–6; and third, there is the detailed image of the yeast tRNAPhe molecule independently determined and refined from two different—albeit similar—crystal forms7–10. It is also clear, however, that the molecular model deduced from the yeast tRNAphe crystal structure cannot be easily reconciled with all structural requirements for function and is best considered a well-defined and stable canonical form of tRNA which is packed in an unusually well-ordered way in specific crystal lattices. Notwithstanding the enormous value of this canonical form in explaining the basic architectural features of tRNA, it is clearly important to image other crystalline tRNAs; particularly tRNAs that exhibit different functions (such as, initiators) or have significantly different covalent structures (for example, class III tRNAs)1 or those that crystallise in different solvent conditions. We report here the initial results of the crystal structure determination of a eukaryotic initiator tRNA crystallised from a highly polar aqueous solvent11,12. Its architecture is essentially the same as crystalline yeast tRNAphe, except for a small but significant difference in the position of the anticodon arm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Levitt, M. Nature 224, 759 (1969).

  2. 2

    Barrell, B. G. & Clark, B. F. C. Handbook of Nucleic Acid Sequences (Joynson-Bruvvers, Oxford, 1974).

  3. 3

    Sprinzl, M., Grüter, F. & Gauss, D. H. Nucleic Acids Res. Special Supplement r15 (1978).

  4. 4

    Sigler, P. B. A. Rev. Biophys. Bioengng 4, 477 (1975).

  5. 5

    Kim, S.-H. Prog. Nucleic Acid Res. molec. Biol. 17, 181 (1976).

  6. 6

    Rich, A. & RajBhandary, V. L. A. Rev. Biochem. 45, 805 (1976).

  7. 7

    Quigley, G. J. et al. Proc. natn. Acad. Sci. U.S.A. 72, 4866 (1975).

  8. 8

    Jack, A., Ladner, J. E. & Klug, A. J. molec. Biol. 108, 619 (1976).

  9. 9

    Stout, C. D. et al. Nucleic Acids Res. 3, 1111 (1976).

  10. 10

    Sussman, J. L., Holbrook, S. R., Warrant, R. W., Church, G. M. & Kim, S.-H. J. molec. Biol. 123, 607 (1978).

  11. 11

    Young, J. D. et al. Science 166, 1527 (1969).

  12. 12

    Johnson, C. D., Adolph, R., Rosa, J. J., Hall, M. D. & Sigler, P. B. Nature 226, 1246 (1970).

  13. 13

    Podjarny, A. D., Schevitz, R. W., Hughes, J., Zwick, M. & Sigler, P. B. (in preparation).

  14. 14

    Holley, R. W. et al. Science 147, 1462 (1965).

  15. 15

    Schevitz, R. W. et al. in Structure and Conformation of Nucleic Acids and Protein-Nucleic Acid Interactions (eds Sundaralingam, M. & Rao, S. T.) 85 (University Park Press, Baltimore, 1975).

  16. 16

    Jack, A., Ladner, J. E., Rhodes, D., Brown, R. S. & Klug, A. J. molec. Biol. 111, 315 (1977).

  17. 17

    Quigley, G. J., Teeter, M. M. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 75, 64 (1978).

  18. 18

    Holbrook, S. R., Sussman, J. L., Warrant, R. W. & Kimn, S.-H. J. molec. Biol. 123, 631 (1978).

  19. 19

    Bricogne, G. Acta Crystallogr. A 32, 832 (1976).

  20. 20

    Hendrickson, W. A. in Current Trends in Biomolecular Structure (ed. Srinivasan, R.) (Pergamon, Oxford, in the press).

  21. 21

    Podjarny, A. D., Yonath, A. & Traub, W. Acta Crystallogr. A 32, 281 (1976).

  22. 22

    Podjarny, A. D. & Yonath, A. Acta Crystallogr. A 33, 655 (1977).

  23. 23

    Collins, D. M. et al. Science 190, 1047 (1975).

  24. 24

    Barrett, A. N. & Zwick, M. Acta Crystallogr. 27, 6 (1971).

  25. 25

    Pasek, M., Venkatappa, M. P. & Sigler, P. B. Biochemistry 12, 4834 (1973).

  26. 26

    Tropp, J. S. & Sigler, P. B. (in preparation).

  27. 27

    Schevitz, R. W. et al. science 177, 429 (1972).

  28. 28

    Neidle, S. & Stuart, D. I. Biochim. biophys. Acta 418, 226 (1976).

  29. 29

    Kistenmacher, T. J., Marzilli, L. G. & Rossi, M. Bioinorg. Chem. 6, 347 (1976).

  30. 30

    Rosa, J. J. & Sigler, P. B. Biochemistry 13, 5102 (1974).

  31. 31

    Podjarny, A. D. thesis, Weizmann Institute of Science, Rehovot (1976).

  32. 32

    Sussman, J. L., Holbrook, S. R., Church, G. M. & Kirn, S.-H. Acta Crystallogr. A 33, 243 (1977).

  33. 33

    Blow, D. M. & Crick, F. H. C. Acta Crystallogr. 12, 794 (1959).

  34. 34

    Robertus, J. D. et al. Nature 250, 546 (1974).

  35. 35

    Silverton, E. W., Navia, M. A. & Davies, D. R. Proc. natn. Acad. Sci. U.S.A. 74, 5140 (1977).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

SCHEVITZ, R., PODJARNY, A., KRISHNAMACHARI, N. et al. Crystal structure of a eukaryotic initiator tRNA. Nature 278, 188–190 (1979). https://doi.org/10.1038/278188a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.