Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of tetrodotoxin on adrenaline secretion in the perfused rat adrenal medulla

Abstract

EXTRACELLULAR Ca ions are required for the secretion of many hormones1. In the adrenal medulla catecholamine secretion evoked by acetylcholine (ACh) is completely blocked by omitting Ca from the medium2,3. The mechanism for Ca entry has been studied in a phaeochromocytoma cell line (PC12) which originated from a rat adrenal medullary tumour4,5. Two alternative ways of Ca entry were considered, voltage-dependent Ca channels and ACh channels. By analysing dopamine secretion4 and radioactive Ca influx5 in various ionic environments it was concluded that more than 80% of the Ca ions enter through the voltage-dependent Ca channels during stimulation by cholinergic agonists. Action potentials mediated by Na6,7 and Ca7 have been demonstrated in primary cultures of rat adrenal chromaffin cells. Furthermore, extracellular recording techniques can detect spontaneous action potentials in these cells. The frequency of these action potentials is modified in a dose-dependent manner by ACh (3×10−7M to 10−4M)7, and the same range of ACh concentrations stimulates adrenaline secretion in the perfused rat adrenal medulla3,8. Thus modulation of action potential frequency by ACh may be a mechanism for controlling the amount of Ca entry. The potential change during a Na action potential may activate voltage-dependent Ca channels, thereby increasing Ca influx. Also, spontaneous action potentials are blocked by 6 µM tetrodotoxin (TTX)7, a specific inhibitor of Na channels9. Therefore, if the Na action potential is involved in secretion, TTX should reduce Ca entry which in turn should decrease catecholamine secretion. We tested this hypothesis in the perfused rat adrenal medulla and report here that TTX decreases a portion of the adrenaline secretion evoked by either high KCl or ACh. Thus, Na action potentials, by facilitating the activation of Ca channels, may be involved in the regulation of adrenaline secretion from adrenal chromaffin cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Douglas, W. W. Br. J. Pharmac. 34, 451–474 (1968).

    Article  CAS  Google Scholar 

  2. Douglas, W. W. & Rubin, R. P. J. Physiol., Lond. 159, 40–57 (1961).

    Article  CAS  Google Scholar 

  3. Ishikawa, K., Harada, E. & Kanno, T. Jap. J. Physiol. 27, 251–266 (1977).

    Article  CAS  Google Scholar 

  4. Ritchie, A. K. J. Physiol., Lond. (in the press).

  5. Stallcup, W. B. J. Physiol., Lond. (in the press).

  6. Biales, B., Dichter, M. & Tischler, A. J. Physiol., Lond. 262, 743–753 (1976).

    Article  CAS  Google Scholar 

  7. Brandt, B. L., Hagiwara, S., Kidokoro, Y. & Miyazaki, S. J. Physiol., Lond. 263, 417–439 (1976).

    Article  CAS  Google Scholar 

  8. Kimura, K. Scient. Rep. Nayoro Women's Coll. 7, 11–18 (1974).

    Google Scholar 

  9. Narahashi, T., Moore, J. W. & Scott, W. J. gen. Physiol. 47, 965–974 (1974).

    Article  Google Scholar 

  10. Nagatsu, T. in Biochemistry of Catecholamines, 230–234 (University Park Press, Baltimore, 1973).

    Google Scholar 

  11. Shore, P. A. & Olin, J. S. J. Pharmac. exp. Ther. 122, 295–300 (1958).

    CAS  Google Scholar 

  12. Hagiwara, S. in Advances in Biophysics, Ch. 4 (ed. Kotani, M.) 71–102 (University of Tokyo Press, 1973).

    Google Scholar 

  13. Rink, T. J. & Baker, P. F. in Calcium Transport in Contraction and Secretion (eds Carafoli, E., Clementi, F., Drabikowski, W. & Magreth, A.) 235–242 (1975).

    Google Scholar 

  14. Schubert, D. & Klier, F. G. Proc. natn. Acad. sci. U.S.A. 74, 5184–5188 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Frankenhaeuser, B. & Hodgkin, A. L. J. Physiol., Lond. 137, 218–244 (1957).

    Article  CAS  Google Scholar 

  16. Hagiwara, S. & Takahashi, K. J. gen. Physiol. 50, 583–601 (1967).

    Article  CAS  Google Scholar 

  17. Hille, B. J. gen. Physiol. 51, 221–236 (1968).

    Article  CAS  Google Scholar 

  18. Ohmori, H. & Yoshii, M. J. Physiol., Lond. 267, 429–463 (1977).

    Article  CAS  Google Scholar 

  19. Baker, P. F., Hodgkin, A. L. & Ridgeway, E. B. J. Physiol., Lond. 218, 709–755 (1971).

    Article  CAS  Google Scholar 

  20. Baker, P. F., Meves, H. & Ridgway, E. B. J. Physiol., Lond. 231, 511–526 (1973).

    Article  CAS  Google Scholar 

  21. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 116, 497–506 (1952).

    Article  CAS  Google Scholar 

  22. Baker, P. F., Meves, H. & Ridgway, E. B. J. Physiol., Lond. 231, 527–548 (1973).

    Article  CAS  Google Scholar 

  23. Baker, P. F. & Rink, T. J. J. Physiol., Lond. 253, 593–620 (1975).

    Article  CAS  Google Scholar 

  24. Dichter, M. A., Tischler, A. S. & Greene, L. A. Nature 268, 501–504 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Greene, L. A. & Rein, G. Brain Res. 138, 521–528 (1977).

    Article  CAS  Google Scholar 

  26. Unsicker, K., Krisch, B., Otten, U., Thoenen, H. Proc. natn. Acad. sci. U.S.A. 75, 3498–3502 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Donatsch, P., Lowe, D. A., Richardson, B. P. & Taylor, P. J. Physiol., Lond. 267, 357–376 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KIDOKORO, Y., RITCHIE, A. & HAGIWARA, S. Effect of tetrodotoxin on adrenaline secretion in the perfused rat adrenal medulla. Nature 278, 63–65 (1979). https://doi.org/10.1038/278063a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/278063a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing