Letter | Published:

In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens

Naturevolume 277pages129131 (1979) | Download Citation



CROWN GALL, the plant tumour of many dicotyledonous and some monocotyledonous species, is caused by Agrobacterium tumefaciens infection after wounding1. Crown gall cells, unlike cells derived from healthy plants, have the ability to proliferate indefinitely in culture without the growth hormones auxin and cytokinin2. The properties of the tumours, such as morphology (rough or smooth type). and the synthesis of the unusual aminoacid derivatives octopine or nopaline, are determined by the tumour-inducing (TI). plasmid present in the virulent bacterial strains3,4. The presence of at least a part of the plasmid has been demonstrated in the DNA of the tumour cultures4. Transcription of this fragment was also demonstrated in the cells of the tumour tissues5,6. These findings seem to confirm the involvement of the TI plasmid in crown gall disease. However, it is not known if introduction of the TI plasmid alone into the plant cells is sufficient to obtain transformation of healthy plant cells into tumour cells. A fundamental approach to this question involves the development of an in vitro transformation system which can use TI plasmids of A. tumefaciens as vectors of genetic material in experiments to modify the genetic information of plants. We report here the transformation of tobacco cells by virulent strains of A. tumefaciens, the isolation and characterisation of transformed calli and the regeneration of shoots with a distinct tumour marker.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    De Cleene, M. & de Ley, J. Bot. Rev. 42, 289–466 (1976).

  2. 2

    Schilperoort, R. A. & Bomhoff, G. H. in Genetic Manipulation with Plant Material (ed. Ledoux, L.). 141–162 (Plenum, New York, 1975).

  3. 3

    Bomhoff, G. et al. Molec. gen. Genet. 145, 177–181 (1976).

  4. 4

    Chilton, M.-D. et al. Cell 11, 263–271 (1977).

  5. 5

    Drummond, M. H., Gordon, M. P., Nester, E. W. & Chilton, M.-D. Nature 269,535–536 (1977).

  6. 6

    Ledeboer, A. M. thesis, Univ. Leiden (1978).

  7. 7

    Maliga, P., Sz-Breznovits, A., Márton, L. & Joó, F. Nature 255, 401–403 (1975).

  8. 8

    Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

  9. 9

    Nagy, J. I. & Maliga, P. Z. Pflanzenphysiologie 78, 453–455 (1976).

  10. 10

    Nitsch, J. P. & Nitsch, C. Science 163, 85–87 (1969).

  11. 11

    Kao, K. N., Constabel, F., Michayluk, M. R. & Camborg, O. L. Planta 120, 215–227 (1975).

  12. 12

    Scowcroft, W. R., Davey, M. R. & Power, J. B. Pl. Sci. Lett. 1, 451–456 (1973).

  13. 13

    Linsmaier, E. M. & Skoog, F. Physiologia Pl. 18, 100–126 (1965).

  14. 14

    Otten, L. A. B. M. & Schilperoort, R. A. Biochim. biophys. Acta (in the press).

  15. 15

    Klapwijk, P. M., Scheulderman, T. & Schilperoort, R. A. J. Bact. (in the press).

  16. 16

    Koekman, B., Ooms, G., Klapwijk, P. M. & Schilperoort, R. A. Plasmid (in the press).

  17. 17

    Schell, J. et al. in Nucleic Acids and Protein Synthesis in Plants (eds Bogorad, L. & Weil, J. H.). 329–342 (Plenum, New York, 1977).

Download references

Author information

Author notes

    • L. MÁRTON

    Present address: Institute of Plant Physiology, Biological Research Center, H-6701, Szeged, PO Box 521, Hungary


  1. Department of Biochemistry, State University of Leiden, Wassenaarseweg 64, 2300 RA, Leiden, The Netherlands

    • L. MÁRTON
    • , G. J. WULLEMS
    • , L. MOLENDIJK


  1. Search for L. MÁRTON in:

  2. Search for G. J. WULLEMS in:

  3. Search for L. MOLENDIJK in:

  4. Search for R. A. SCHILPEROORT in:

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.