Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamics of protein hydration by quasi-elastic neutron scattering

Abstract

THE importance of water and its properties for biological systems makes the analysis of the dynamics of protein hydration of special interest1–3. It has long been recognised2 that neutron scattering can, in principle, provide the most complete description of molecular motions in hydrated biopolymers. Here we report the first results of an application of high-resolution quasi-elastic neutron scattering4–7 to the dynamics of protein hydration. A neutron beam incident on a biological sample produces scattered radiation that consists of a coherent part (that is, one that gives rise to an interference pattern which, in its Bragg scattering, contains the structural information8–10) and an incoherent part that cannot give interference effects but exhibits spectral changes which carry information on dynamic processes. Quasi-elastic neutron scattering explores the low-frequency region of the spectrum characterised by energy transfers of the order of, and less than, 1 cm−1. Because of the very large incoherent scattering cross-section of protons (80 b) relative to all other nuclei (<0.4 b) present in natural biological samples, the incoherent scattering is almost entirely due to hydrogenous groups and water molecules. By replacing some or all of the carbon-bound hydrogens by deuterium (2 b), dynamic contrast factors of up to 15 can be attained so that a wide range of contrast experiments becomes possible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kuntz, I. D. & Kauzmann, W. Adv. Protein Chem. 28, 239–338 (1974).

    Article  CAS  Google Scholar 

  2. Berendsen, H. J. C. in Water: A Comprehensive Treatise, Vol. 5 (ed. Franks, F.) 239–349 (Plenum, New York, 1975).

    Google Scholar 

  3. Packer, K. J. Phil. Trans. R. Soc. B278, 59–87 (1976).

    Article  Google Scholar 

  4. Willis, B. T. M. (ed.) Chemical Applications of Neutron Scattering (Oxford University Press, London, 1975).

  5. Allen, G. & Higgins, J. S. Rep. Prog. Phys. 36, 1073–1133 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Springer, T. in Springer Tracts in Modern Physics, Vol. 64 (ed. Höhler, G.) 1–100 (Springer, Berlin, 1972).

    Google Scholar 

  7. Egelstaff, P. Brookhaven Symp. Biol. 27, 1–26 (1976).

    Google Scholar 

  8. Worcester, D. L. in Biological Membranes, Vol. 3 (eds Chapman, D. & Wallach, D. H. F.) 1–48 (Academic, London, 1975).

    Google Scholar 

  9. Jacrot, B. Rep. Prog. Phys. 39, 911–935 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Kneale, G. G., Baldwin, J. P. & Bradbury, E. M. Q. Rev. Biophys. 10, 485–517 (1977).

    Article  CAS  Google Scholar 

  11. Drexel, W. & Peticolas, W. L. Biopolymers 14, 715–721 (1975).

    Article  CAS  Google Scholar 

  12. Cooper, A. Proc. natn. Acad. Sci. U.S.A. 73, 2740–2741 (1976).

    Article  ADS  CAS  Google Scholar 

  13. McCammon, J. A., Gelin, B. R. & Karplus, M. Nature 267, 585 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Karplus, M. & Weaver, D. L. Nature 260, 404–406 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Crampin, J., Nicholson, B. H. & Robson, B. Nature 272, 558–560 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Hagler, A. T. & Moult, J. J. Nature 272, 222–226 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Birr, M., Heidemann, A. & Alefeld, B. Nucl. Instrum. Meth. 95, 435–439 (1971).

    Article  ADS  CAS  Google Scholar 

  18. Stirling, G. C. Int. Symp. Neutron Inelastic Scattering 1, 25–37 (IAEA, Vienna, 1977).

    Google Scholar 

  19. Berns, D. S. in Subunits in Biological Systems, Vol. 5A (eds Timasheff & Fasman) 105–148 (Dekker, New York, 1971).

    Google Scholar 

  20. Taecker, R. G., Crespi, H. L., DaBoll, H. F. & Katz, J. J. Biotechnol. Bioengng 13, 779–793 (1971).

    Article  CAS  Google Scholar 

  21. O'Carra, P. & O'hEocha, C. in Chemistry and Biochemistry of Plant Pigments, Vol. 1 (ed. Goodwin, T. W.) 328–376 (Academic, London, 1976).

    Google Scholar 

  22. Middendorf, H. D. Nucl. Instrum. Meth. 114, 397–399 (1974).

    Article  ADS  Google Scholar 

  23. Rowe, J. M., Sköld, K., Flotow, H. E. & Rush, J. J. Phys. Chem. Solids 32, 41–54 (1971).

    Article  ADS  CAS  Google Scholar 

  24. Chudley, C. T. & Elliott, R. J. Proc. phys. Soc. 77, 353–361 (1961).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RANDALL, J., MIDDENDORF, H., CRESPI, H. et al. Dynamics of protein hydration by quasi-elastic neutron scattering. Nature 276, 636–638 (1978). https://doi.org/10.1038/276636a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/276636a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing