Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of DNA polymerase γ in adenovirus DNA replication

Abstract

THE linear DNA of the human adenoviruses type 2 and type 5 (Ad2, Ad5) replicates in the nucleus of permissive cells by a mechanism different from that of chromosomal DNA or papovavirus DNA. Papovaviruses replicate bidirectionally, with both parental strands being duplicated almost synchronously, whereas adenovirus DNA replication occurs unidirectionally by a strand displacement mechanism1. No new DNA polymerase has been observed in Ad5 infected cells2. To determine which cellular DNA polymerase is required for adenovirus DNA replication we used the nucleotide analogue 2′,3′-dideoxythymidine triphosphate (ddTTP) which inhibits DNA polymerase β, and in particular DNA polymerase γ but not DNA polymerase α (refs 3,4). Addition of ddTTP to isolated nuclei which synthesise adenovirus DNA in vitro results in a strong inhibition. In similar conditions cellular DNA or SV40 DNA synthesis is not affected. In view of the presence of DNA polymerase α and γ, but not β, in adenovirus replication complexes5,6 our results indicate that only DNA polymerase γ is required for adenovirus DNA chain growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Levine, A. J., van der Vliet, P. C. & Sussenbach, J. S. Curr. Top. Microbiol Immun. 73, 67–124 (1976).

    Article  CAS  Google Scholar 

  2. de Jong, A. J., van der Vliet, P. C. & Jansz, H. S. Biochim. biophys. Acta 476, 156–165 (1977).

    Article  CAS  Google Scholar 

  3. Edenberg, H. J., Anderson, S. & De Pamphilis, M. L. J. biol. Chem. 253, 3273–3280 (1978).

    CAS  PubMed  Google Scholar 

  4. Wagar, M. A., Evans, M. J. & Huberman, J. A. Nucleic Acids Res. 5, 1933–1946 (1978).

    Article  Google Scholar 

  5. Arens, M., Yamashita, T., Padmanabhan, R., Tsurno, T. & Green, M. J. biol. Chem. 252, 7947–7954 (1977).

    CAS  PubMed  Google Scholar 

  6. Brison, O., Kedinger, C. & Wilhelm, J. J. Virol. 24, 423–435 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Vliet, P. C., Zandberg, J. & Jansz, H. S. Virology 80, 98–110 (1977).

    Article  CAS  Google Scholar 

  8. Baum, S. G., Horwitz, M. S. & Maizel, J. V. J. Virol. 10, 211–219 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Klessig, D. F. & Anderson, C. W. J. Virol. 16, 1650–1668 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Atkinson, M. R., Deutscher, M. P., Kornberg, A., Rusell, A. F. & Moffat, J. G. J. biol. Chem. 8, 4897–4904 (1969).

    CAS  Google Scholar 

  11. Geider, K. Eur. J. Biochem. 27, 554–563 (1972).

    Article  CAS  Google Scholar 

  12. Bolden, A., Noy, G. P. & Weissbach, A. J. biol. Chem. 252, 3351–3356 (1976).

    Google Scholar 

  13. Bertazzoni, U., Scovassi, A. I. & Brun, M. G. Eur. J. Biochem. 81, 237–248 (1977).

    Article  CAS  Google Scholar 

  14. Hubscher, U., Kuenzle, C. C. & Spadari, S. Eur. J. Biochem. 81, 249–258 (1977).

    Article  CAS  Google Scholar 

  15. Robberson, D. L., Kasamatsu, H. & Vinograd, J. Proc. natn. Acad. Sci. U.S.A. 69, 737–741 (1972).

    Article  ADS  CAS  Google Scholar 

  16. Kedinger, C., Brison, O., Perrin, F. & Wilhelm, J. J. Virol. 26, 364–380 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Levine, A. J., Kang, H. S. & Billheimer, F. E. J. molec. Biol. 50, 549–568 (1970).

    Article  CAS  Google Scholar 

  18. Su, R. T. & De Pamphilis, M. L. Proc. natn. Acad. Sci. U.S.A. 73, 3466–3470 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Knopf, K. W., Yamada, M. & Weissbach, A. Biochemistry 15, 4540–4548 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VAN DER VLIET, P., KWANT, M. Role of DNA polymerase γ in adenovirus DNA replication. Nature 276, 532–534 (1978). https://doi.org/10.1038/276532a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/276532a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing