Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differences in fluidity between bilayer halves of tumour cell plasma membranes

Abstract

SURFACE membranes of both normal and transformed cells appear to have an asymmetric distribution of phospholipids across the bilayer1–6. The potential role of this distribution in platelet aggregation and in pathological conditions such as sickle cell anaemia and cell transformation has been investigated7–9. However, neither the structural nor functional significance of this asymmetrical distribution is understood at present. As the lipid composition of the two sides of the plasma membrane bilayer is different it seems possible that the ‘fluidity’ or other physicochemical properties are also different. It has been shown that the neutral zwitterionic lipids (phosphatidylcholine and sphingomyelin) are located primarily in the outer monolayer while the anionic zwitterionic lipids (phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol) are located primarily in the inner or cytoplasmic monolayer. In model systems the former lipids are usually more fluid while the latter lipids are more rigid10. Thus, a fluidity gradient could exist across the bilayer of biological membranes. Such a gradient and alterations of it may have important consequences in vectorial processes such as small molecule transport, receptor mobility, hormone receptor interactions and the activity of membrane-bound enzymes. However, as mammalian cells can compensate or homeoviscously adapt and because biological membranes are complex mixtures of cholesterol and phospholipids with different fatty acyl chain length or unsaturation, direct experimental measurement is necessary to determine if such vertical asymmetry of ‘fluidity’ exists across the plasma membrane bilayer of mammalian cells11–16. I report here use of a fluorescent probe molecule, β-parinaric acid, used in conjunction with the amino labelling reagent 2,4,6-trinitrobenzenesulphonic acid (TENS) to investigate this asymmetry. The data obtained are consistent with the conclusion that the inner monolayer of the plasma membrane is less fluid than the outer monolayer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bergelson, L. D. & Barsukov, L. I. Science 197, 224–230 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Rothman, J. E. & Lenard, J. Science 195, 743–753 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Nillson, O. S. & Dallner, G. Biochim. biophys. Acta 464, 453–458 (1977).

    Article  Google Scholar 

  4. Sandra, A. & Pagano, R. E. Biochemistry 17, 332–338 (1978).

    Article  CAS  Google Scholar 

  5. Fontaine, R. N. & Schroeder, F. Biochim. biophys. Acta (submitted).

  6. Fontaine, R. N., Harris, R. A. & Schroeder, F. J. Neurochem. (submitted).

  7. Zwaal, R. F. A., Comfurius, P. & Van Deenen, L. L. M. Nature 268, 358–360 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Gordesky, S. E., Marinetti, G. V. & Segal, G. V. Biochem. biophys. Res. Commun. 47, 1004–1009 (1972).

    Article  CAS  Google Scholar 

  9. Mark-Malchoff, D., Marinetti, G. V., Hare, J. D. & Meisler, A. Biochem. biophys. Res. Commun. 75, 589–597 (1977).

    Article  CAS  Google Scholar 

  10. Vaughan, D. J. & Keough, K. M. FEBS Lett. 47, 158–161 (1974).

    Article  CAS  Google Scholar 

  11. Schroeder, F., Perlmutter, J., Glaser, M. & Vagelos, P. R. J. biol. Chem, 251, 5015–5026 (1976).

    CAS  PubMed  Google Scholar 

  12. Holland, J. F., Teets, R. E. & Timmick, A. Analyt. Chem. 45, 145–153 (1973).

    Article  CAS  Google Scholar 

  13. Holland, J. F., Teets, R. E., Sindmack, G. & Timmick, A. Analyt. Chem. 49, 706–711 (1977).

    Article  CAS  Google Scholar 

  14. Schroeder, F., Holland, J. F. & Vagelos, P. R. J. biol. Chem. 251, 6739–3746 (1976).

  15. Schroeder, F., Holland, J. F. & Vagelos, P. R. J. biol. Chem. 251, 6747–6756 (1976).

    CAS  PubMed  Google Scholar 

  16. Schroeder, F. Biochim. biophys. Acta 511, 306 (1978).

    Google Scholar 

  17. Schroeder, F. & Holland, J. F. in Biomolecular Structure and Function (eds Agris, P. F., Loeppky, R. N. & Sykes, B. K.) 137–145 (Academic, New York, New York, 1978).

    Book  Google Scholar 

  18. Snyder, S. L. & Sobocinski, P. A. Analyt. Biochem. 64, 284–288 (1975).

    Article  CAS  Google Scholar 

  19. Schroeder, F., Goh, E. H. & Heimberg, M. J. biol. Chem. (in the press).

  20. Tanaka, K.-I. & Ohnishi, S.-I. Biochim. biophys. Acta 426, 218–231 (1976).

    Article  CAS  Google Scholar 

  21. Morse, P. D., Ruhlig, M., Snipes, W. & Keith, A. D. Archs Biochem. Biophys. 168, 40–56 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SCHROEDER, F. Differences in fluidity between bilayer halves of tumour cell plasma membranes. Nature 276, 528–530 (1978). https://doi.org/10.1038/276528a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/276528a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing