Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of measles proviral DNA in systemic lupus erythematosus

Abstract

MEASLES VIRUS usually causes an acute self-limiting infection in humans and a productive cytolytic infection in susceptible tissue culture cells. However, measles-like virus has been isolated from the brains of patients with subacute sclerosing panencephalitis (SSPE), a chronic progressive neurological disorder of children1. Also, persistent measles infection has been implicated in the pathogenesis of several chronic diseases of unknown aetiology, including multiple sclerosis2 and systemic lupus erythematosus (SLE)3. Manipulation of the conditions of infection can result in persistently infected tissue culture cells, which have been proposed as a model system for studying the molecular mechanisms responsible for cytolytic virus persistence in man4–6. There is experimental evidence for at least four mechanisms leading to the induction of persistent measles infections: the production of defective virus particles which interfere with the replication of complete virus7, the generation of mutant virus strains with the capacity for non-cytolytic replication8, and infection of certain cell types (for example, neurones) restricted in their capacity to support all steps in virus replication9. Zhdanov et al.10–13 have proposed that measles virus persists in cells by a mechanism similar to that shown for retroviruses, that is, the synthesis of a DNA copy of the viral genome and the insertion of the proviral DNA into the host cell chromosome. This would be a novel mode of replication, as the replication of measles virus in cytolytic infections involves a double-stranded RNA intermediate. Using tritium-labelled viral RNA probes in molecular hybridisation assays, Zhdanov et al. have demonstrated the presence of measles virus-related DNA in chick embryo cells11 and human lymphoid cells13 persistently infected with measles virus. Further, they detected measles virus-related DNA in leukocytes, lymph nodes, kidney and urine cell sediment from five SLE patients12. Negative results were obtained using cells from appropriate control tissues. The obligative reverse transcriptase was found in the persistently infected cell lines and SLE tissues, and concomitant retrovirus infection was proposed as a prerequisite for persistent measles infection. Thus, these studies not only provide insights into the molecular mechanisms of measles virus persistence but suggest aetiological relationships for a fatal disease of unknown cause. However, we report here that, using a more sensitive nucleic acid hybridisation assay, we were unable to confirm the presence of measles virus-related DNA in either persistently infected cells or cells from patients with SLE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Horta-Barbosa, L., Fucillo, D., Sever, J. & Zeman, W. Nature 221, 974 (1969).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Brody, J. Lancet i, 173 (1972).

    Article  Google Scholar 

  3. Viola, M. V., Scott, C. S. & Duffy, P. Arthritis Rheum. 5, 546 (1978).

    Google Scholar 

  4. Rustigian, R. J. Bact. 92, 1792 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Norrby, E. Arch. ges. Virusforsch. 20, 216 (1967).

    Article  Google Scholar 

  6. Knight, P., Duff, R. & Rapp, F. J. Virol. 10, 995–1001 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, A. & Baltimore, D. Nature 226, 325 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Preble, R. & Younger, J. J. infect. Dis. 131, 467 (1975).

    Article  CAS  PubMed  Google Scholar 

  9. Raine, C., Feldman, L., Sheppard, R. & Bornstein, J. J. Virol. 8, 318 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhdanov, V. & Parfanovich, M. Arch. ges. Virusforsch. 45, 225 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. Alekberova, Z., Parfanovich, M., Nassonova, V. & Zhdanov, V. Arch. Virusforsch. 47, 109 (1975).

    Article  CAS  Google Scholar 

  12. Zhdanov, V. Nature 256, 471 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Barinskii, I. F. et al. Proc. natn. Acad. Sci. USSR 238, 236–238 (1978).

    CAS  Google Scholar 

  14. Rothenberg, E. & Baltimore, D. J. Virol. 17, 168 (1976).

    CAS  PubMed Central  Google Scholar 

  15. Kacian, D. & Myers, J. Proc. natn. Acad. Sci. U.S.A. 73, 2191 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Hall, W. W. & ter Meulen, V. J. gen. Virol. 34, 391 (1977).

    Article  CAS  PubMed  Google Scholar 

  17. Kiley, M. & Payne, F. J. Virol. 14, 758 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Viola, M. V. & Norton, P. J. Virol. (in the press).

  19. Studier, F. J. molec. Biol. 11, 373 (1965).

    Article  CAS  PubMed  Google Scholar 

  20. Birnstiel, M., Sells, B. & Purdom, I. J. molec. Biol. 63, 21 (1972).

    Article  CAS  PubMed  Google Scholar 

  21. Granboulan, N. & Girard, M. J. Virol. 4, 475 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schluederberg, A. E. Biochem. biophys. Res. Commun. 42, 1012 (1971).

    Article  CAS  PubMed  Google Scholar 

  23. Palacios, R., Palmiter, R. D. & Schimke, R. T. J. biol. Chem. 247, 2316 (1972).

    CAS  PubMed  Google Scholar 

  24. Glisin, V., Crkvenjakov, R. & Byus, C. Biochemistry 13, 2633 (1974).

    Article  CAS  PubMed  Google Scholar 

  25. Viola, M. V. & White, L. Nature 246, 485 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Britten, R. & Kohne, D. Science 161, 529 (1968).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Vogt, V. Eur. J. Biochem. 33, 142 (1973).

    Article  Google Scholar 

  28. Viola, M. V., Frazier, M., Wiernik, P., McCredie, K. & Spiegelman, S. New Engl. J. Med. 294, 75 (1976).

    Article  CAS  PubMed  Google Scholar 

  29. Ilyin, K., Bykovsky, A. & Zhdanov, V. Cancer 32, 89 (1973).

    Article  CAS  PubMed  Google Scholar 

  30. Rice, J. M. & Wolf, D. A. In Vitro 10, 352 (1975).

    Google Scholar 

  31. Hutton, J. & Wetmur, J. Biochem. biophys. Res. Commun. 52, 1148 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VIOLA, M., GANN, K., SCOTT, C. et al. Absence of measles proviral DNA in systemic lupus erythematosus. Nature 275, 667–669 (1978). https://doi.org/10.1038/275667a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275667a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing