Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vivo aminoacylation and ‘processing’ of turnip yellow mosaic virus RNA in Xenopus laevis oocytes

Abstract

IT is now well established that several plant and animal virus RNAs possess a ‘tRNA-like’ structure, as they are recognised in vitro by many tRNA-specific enzymes. To approach the problem of the possible physiological significance of these structures for the development of the virus, it seemed important to determine whether they are also recognised in vivo. The most logical approach would have been to use plant protoplast systems to study the behaviour of viral genomes in the infected cells. However, because such systems are still difficult to control, we decided to use the oocyte system. We describe here how turnip yellow mosaic virus (TYMV) RNA, which can be aminoacylated in vitro by valine1, was microinjected into Xenopus laevis oocytes, incubated in the presence of 3H-valine and the RNA charged in vivo analysed. We conclude that TYMV RNA, the 3′ terminal sequence of which is –CC (refs 2, 3), is amino-acylated in vivo. This indicates that the viral RNA is recognised by the oocyte tRNA nucleotidyltransferase and valyl-tRNA synthetase. Furthermore, the TYMV Val-RNA recovered after the in vivo reaction is fragmented and migrates between 4S and 5S RNA markers. This implies that (an) RNase(s) split(s) the viral genome, liberating this tRNA-like structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pinck, M., Yot, P., Chapeville, F. & Duranton, H. M. Nature 226, 954–956 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Yot, P., Pinck, M., Haenni, A. L., Duranton, H. M. & Chapeville, F. Proc. natn. Acad. Sci. U.S.A. 67, 1345–1352 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Litvak, S., Carré, D. S. & Chapeville, F. FEBS Lett. 11, 316–319 (1970).

    Article  CAS  Google Scholar 

  4. Klein, C. et al. Nucleic Acids Res. 3, 3043–3061 (1976).

    Article  CAS  Google Scholar 

  5. Briand, J. P., Jonard, G., Guilley, H., Richards, K. & Hirth, L. Eur. J. Biochem. 72, 453–463 (1977).

    Article  CAS  Google Scholar 

  6. Silberklang, M., Prochiantz, A., Haenni, A. L. & RajBhandary, U. L. Eur. J. Biochem. 72, 465–478 (1977).

    Article  CAS  Google Scholar 

  7. Yaniv, M. & Barrell, B. G. Nature 222, 278–279 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Yaniv, M. & Barrell, B. G. Nature new Biol. 233, 113–114 (1971).

    Article  CAS  Google Scholar 

  9. Solari, A., Gatica, M. & Allende, J. E. Nucleic Acids Res. 4, 1873–1880 (1977).

    Article  CAS  Google Scholar 

  10. Altman, S. & Smith, J. D. Nature new Biol. 233, 35–39 (1971).

    Article  CAS  Google Scholar 

  11. Prochiantz, A. & Haenni, A. L. Nature new Biol. 241, 168–170 (1973).

    Article  CAS  Google Scholar 

  12. Leberman, R. Virology 30, 341–347 (1966).

    Article  CAS  Google Scholar 

  13. Porter, A., Carey, N. & Fellner, P. Nature 248, 675–678 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Benicourt, C., Péré, J. P. & Haenni, A. L. FEBS Lett. 86, 268–272 (1978).

    Article  CAS  Google Scholar 

  15. Gurdon, J. B. J. Embryol. exp. Morph. 20, 401–414 (1968).

    CAS  Google Scholar 

  16. Gurdon, J. B., Lane, C. D., Woodland, H. R. & Marbaix, G. Nature 233, 177–182 (1971).

    Article  ADS  CAS  Google Scholar 

  17. Gatica, M., Tarrago, A., Allende, C. & Allende, J. E. Nature 256, 675–678 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Gupta, R. C. & Randerath, K. Nucleic Acids Res. 4, 1957–1978 (1977).

    Article  CAS  Google Scholar 

  19. Randerath, K. Analyt. Biochem. 34, 188–205 (1970).

    Article  CAS  Google Scholar 

  20. Laskey, R. A. & Mills, A. D. Eur. J. Biochem. 56, 335–341 (1975).

    Article  CAS  Google Scholar 

  21. Donis-Keller, H., Maxam, A. M. & Gilbert, W. Nucleic Acids Res. 4, 2527–2538 (1977).

    Article  CAS  Google Scholar 

  22. Bonner, W. M. & Laskey, R. A. Eur. J. Biochem. 46, 83–88 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

JOSHI, S., HAENNI, A., HUBERT, E. et al. In vivo aminoacylation and ‘processing’ of turnip yellow mosaic virus RNA in Xenopus laevis oocytes. Nature 275, 339–341 (1978). https://doi.org/10.1038/275339a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275339a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing