Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of DNA predicted from stereochemistry of nucleoside derivatives

Abstract

CRYSTALLOGRAPHIC data on the constituents of nucleic acids can be very useful in predicting secondary structures. Until recently only data from the crystal structures of mononucleosides and mononucleotides have been used in building models of secondary structures for nucleic acids and polynucleotides. However, such data only provide information about the stereochemistry of nucleotides and not the relative orientation of the nucleotides around the 3′ and 5′ phosphodiester bonds. This relative orientation is the key factor which determines the secondary structure of nucleic acids and details of this orientation can be obtained from single-crystal study of dinucleoside monophosphates and other higher oligomers. So far, crystal structure data on the dinucleoside monophosphates GpC (sodium salt)1, GpC (calcium salt)2, ApU3, UpA4, a dinucleotide pTpT5, a trinucleoside diphosphate ApApA6, and a tetranucleotide pApTpApT (M.A. Viswamitra, personal communication) are available. We have analysed the conformations of these molecules and present here stereochemical criteria for the backbone of the poly-nucleotide chains and the nucleic acids. Application of these criteria to nucleic acids indicates type II structure for DNA, as proposed previously by us7 as an alternative to the double helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rosenberg, J. M., Seeman, N. C., Day, R. O. & Rich, A. J. molec. Biol. 104, 145–167 (1976).

    Article  CAS  Google Scholar 

  2. Hingerty, B. et al. Acta crystallogr. B 32, 2998–3013 (1976).

    Article  Google Scholar 

  3. Seeman, N. C., Rosenberg, J. M., Suddath, F. L., Kim, J. J. P. & Rich, A. J. molec. Biol. 104, 109–144 (1976).

    Article  CAS  Google Scholar 

  4. Sussman, J. L., Seeman, N. C., Kim, S. H. & Berman, H. M. J. molec. Biol. 66, 403–422 (1972).

    Article  CAS  Google Scholar 

  5. Camerman, N., Fawcett, J. K. & Camerman, A. J. molec. Biol. 107, 601–621 (1976).

    Article  CAS  Google Scholar 

  6. Suck, D., Manor, P. C. & Saenger, W. Acta crystallogr. B32, 1727–1737 (1976).

    Article  Google Scholar 

  7. Sasisekharan, V. & Pattabiraman, N. Current Sci. 45, 779–783 (1976).

    CAS  Google Scholar 

  8. Sundaralingam, M. Biopolymers 7, 821–869 (1969).

    Article  CAS  Google Scholar 

  9. Yathindra, N. & Sundaralingam, M. Proc. natn. Acad. Sci. U.S.A. 71, 3325–3328 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Sasisekharan, V. & Lakshminarayanan, A. V. Biopolymers 8, 505–514 (1969).

    Article  CAS  Google Scholar 

  11. Yathindra, N. & Sundaralingam, M. Nucleic Acids Res. 3, 729–747 (1976).

    Article  CAS  Google Scholar 

  12. Kim, S. H., Berman, H. M., Seeman, N. C. & Newton, M. D. Acta crystallogr. B29, 703–710 (1973).

    Article  CAS  Google Scholar 

  13. Kim, S. H. & Sussman, J. L. Nature 260, 645–646 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Arnott, S., Hukins, D. W. L., Dover, S. D., Fuller, W. & Hodgson, A. R. J. molec. Biol. 81, 107–122 (1973).

    Article  CAS  Google Scholar 

  15. Arnott, S., Dover, S. D. & Wonacott, A. Acta crystallogr. B25, 2192–2206 (1969).

    Article  CAS  Google Scholar 

  16. Arnott, S. & Hukins, D. W. L. J. molec. Biol. 81, 93–105 (1973).

    Article  CAS  Google Scholar 

  17. Marvin, D. A., Spencer, M., Wilkins, M. F. H. & Hamilton, L. D. J. molec. Biol. 3, 547–565 (1961).

    Article  CAS  Google Scholar 

  18. Arnott, S., Chandrasekaran, R., Hukins, D. W. L., Smith, R. S. C. & Watts, L. J. molec. Biol. 88, 523–533 (1974).

    Article  CAS  Google Scholar 

  19. Sasisekharan, V., Pattabiraman, N. & Goutam Gupta, Current Sci. 46, 763–764 (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SASISEKHARAN, V., PATTABIRAMAN, N. Structure of DNA predicted from stereochemistry of nucleoside derivatives. Nature 275, 159–162 (1978). https://doi.org/10.1038/275159a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/275159a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing