Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Origin of pregalactic microwave background

An Erratum to this article was published on 28 September 1978


THE photon density in the observed thermal (2.7 K) microwave background is nγ0=400 cm−3. This contrasts with the present mean baryon density in the Universe, nb0, which is in the range 10−5–10−6 cm−3. In the standard ‘hot big bang’ cosmology, the ratio nγ/nb is essentially constant during the expansion, its value being

𝒮=nγ/nb3.6 × 107h2)−1. (1)

h denotes the Hubble constant H0 in units of 100 km s1 Mpc−1 and Ω = 8/3πGρH0−2 is the usual density parameter. 𝒮 is an undetermined free parameter of the ‘primordial fireball’: the standard ‘hot big bang’ theory as yet gives no reason that 𝒮 should be 108 rather than (say) 104 or 1012. Its observed value could be more readily understood in a different theory that attributes the radiative energy and entropy production to calculable processes in a specified epoch. There have been various proposals along these lines1–9, but none has found as much favour as the standard ‘hot big bang’ cosmology. This is because production of the radiation at a redshift z requires a mass–energy conversion efficiency of the order

ργ/ρb2.5 × 10−5(1+z)(Ωh2)−1 (2)

This is implausibly high if z is large enough (»103) to permit thermalisation by H and He plasma alone7–9; on the other hand, if z corresponds to the epoch of galaxy formation (or later), adequate thermalisation at centimetre wavelengths requires implausibly efficient opacity3–5. Here a possible non-primordial origin of the microwave background is outlined that seems less contrived than other such schemes.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Layzer, D. Astrophydics and General Relativity 2, 155–232 (Gordon and Breach, New York, 1969).

    Google Scholar 

  2. Kaufman, M. Astrophys. J. 160, 459 (1970).

    ADS  CAS  Article  Google Scholar 

  3. Layzer, D. & Hively, R. M. Astrophys. J. 179, 361 (1973).

    ADS  Article  Google Scholar 

  4. Narlikar, J. V., Edmunds, M. G. & Wickramasinghe, D. in Infrared Astronomy (ed. Rowan-Robinson, M.) (Pergamon, Oxford, 1975).

    Google Scholar 

  5. Alfven, H. & Mendis, A. Nature 266, 699 (1977).

    ADS  Article  Google Scholar 

  6. Pollaine, S. Nature 271, 426 (1978).

    ADS  Article  Google Scholar 

  7. Rees, M. J. Phys. Rev. Lett. 28, 1669 (1972).

    ADS  Article  Google Scholar 

  8. Carr, B. J. & Rees, M. J. Astr. Astrophys. 61, 705 (1977).

    ADS  CAS  Google Scholar 

  9. Carr, B. J. Astr. Astrophys. 60, 13 (1977).

    ADS  CAS  Google Scholar 

  10. Salpeter, E. E. Astrophys. J. 140, 796 (1964).

    ADS  Article  Google Scholar 

  11. Dicke, R. H. Nature 192, 440 (1962).

    ADS  Article  Google Scholar 

  12. Peebles, P. J. E. Astrophys. J. Lett. 189, L51 (1974).

    ADS  Article  Google Scholar 

  13. Peebles, P. J. E. & Dicke, R. H. Astrophys. J. 154, 891 (1968).

    ADS  Article  Google Scholar 

  14. Gott, J. R. & Rees, M. J. Astr. Astrophys. 45, 365 (1975).

    ADS  Google Scholar 

  15. White, S. D. M. & Rees, M. J. Mon. Not. R. astr. Soc. 183, 341 (1978).

    ADS  Article  Google Scholar 

  16. Einasto, J., Kaasik, A. & Saar, E. Nature 250, 309 (1974).

    ADS  Article  Google Scholar 

  17. Ostriker, J. P., Peebles, P. J. E. & Yahil, A. Astrophys. J. Lett 193, L1 (1974).

    ADS  Article  Google Scholar 

  18. Truran, J. W. & Camero, A. G. W. Astrophys. Space Sci. 14, 179 (1971).

    ADS  CAS  Article  Google Scholar 

  19. Hartquist, T. W. & Cameron, A. G. W. Astrophys. Space Sci. 48, 145 (1977).

    ADS  CAS  Article  Google Scholar 

  20. Rees, M. J. Physica Scripta 17, 371 (1978).

    ADS  Article  Google Scholar 

  21. Mitchell, R. J., Culhane, J. L., Davison, P. J. N. & Ives, J. C. Mon. Not. R. astr. Soc. 176, 29 (1976a).

    ADS  Article  Google Scholar 

  22. Mushotsky, R. F., Serlimitsos, P. J., Smith, B. W., Boldt, E. A. & Holt, S. S. Astrophys. J. (in the press).

  23. Purcell, E. M. Astrophys. J. 158, 433 (1969).

    ADS  Article  Google Scholar 

  24. Goldreich, P. & Kwan, J. Astrophys. J. 189, 441 (1974), 5. Sunyaev, R. A. & Zeldovich, Y. B. Astrophys. Space Sci. 7, 20 (1970).

    ADS  CAS  Article  Google Scholar 

  25. Sunyaev, R. A. & Zeldovich, Y. B. Astrophys. Space Sci. 7, 20 (1970).

    ADS  Google Scholar 

  26. Day, K. L. Astrophys. J. 210, fl4 (1976).

    Article  Google Scholar 

  27. Aannestad, P. A. ophys. J. 220, 538

  28. Herbst, E. & Klemperer, W. Astrophys. J. 185, 505.

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

REES, M. Origin of pregalactic microwave background. Nature 275, 35–37 (1978).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing