Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Do presynaptic auto-receptors control dopamine release?

Abstract

MANY studies have attempted the elucidation of the homeostatic mechanisms controlling the amount of neurotransmitter released in the synapse. There is convincing evidence that the release of noradrenaline (NA), from both peripheral and central presynaptic nerve endings, can be modulated by a negative feedback mechanism, whereby the neurotransmitter present in excess in the synapse depresses its further release by activating specific presynaptic α-receptors, α-Agonist drugs interact similarly to NA with these receptors and inhibit the depolarisation-induced release of the amine, whereas α-antagonists counteract this inhibitory effect1–10. The appealing concept of a feedback control of neurotransmitter release, although unequivocally demonstrated only for NA, has been generalised to other transmitters. This generalisation seems rather premature. In particular, the existence of presynaptic autoreceptors controlling dopamine (DA) release is often accepted2,7,11,12; however, recent observations13,14 argue against this interpretation and, as pointed out by Langer15, the presence of a direct control of DA release by presynaptic receptors remains an open question. In our studies on DA release described here, our experimental approach differs in two main aspects from those used previously13,14. First, we have monitored the release of 3H-DA synthesised from 3H-tyrosine, in addition to that of exogenous 3H-DA previously taken up by the nerve terminals. Newly synthesised DA is preferentially released by depolarising stimuli16 and may therefore be preferentially influenced by a feedback mechanism. Second, we have used superfused synaptosomes. In our conditions17,18, the DA released is immediately removed from the nerve endings and any autoinhibition of release is minimised. Therefore, presynaptic receptors are completely available to the agonists (which should decrease the depolarisation-induced release) or the antagonists added to the superfusion fluid. Our results show that the DA agonists have no effect on the stimulus-coupled release of DA, either taken up or newly synthesised, from striatal synaptosomes, and therefore militate against a direct control of DA release through presynaptic autoreceptors similar to that demonstrated for NA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farnebo, L. O. & Hamberger, B. Br. J. Pharmac. 43, 97–106 (1971).

    Article  CAS  Google Scholar 

  2. Farnebo, L. O. & Hamberger, B. Acta physiol. scand. Suppl. 371, 35–44 (1971).

    Article  CAS  Google Scholar 

  3. Enero, M. A., Langer, S. Z., Rothlin, R. P. & Stefano, F. J. E. Br. J. Pharmac. 44, 672–688 (1972).

    Article  CAS  Google Scholar 

  4. Starke, K. Naunyn-Schmiedebergs Archs Pharmak. 275, 11–23 (1972).

    Article  CAS  Google Scholar 

  5. Langer, S. Z. Biochem. Pharmac. 23, 1793–1800 (1974); Br. J. Pharmac. 60, 481–497 (1977).

    Article  CAS  Google Scholar 

  6. Starke, K. & Montel, H. Naunyn-Schmiedebergs Archs Pharmak. 279, 53–60 (1973).

    Article  CAS  Google Scholar 

  7. Starke, K. Rev. Physiol. Biochem. Pharmac. 77, 1–124 (1977).

    Article  CAS  Google Scholar 

  8. Dismukes, R. K. & Mulder, R. H. Eur. J. Pharmac. 39, 383–388 (1976).

    Article  CAS  Google Scholar 

  9. Taube, H. D., Starke, K. & Borowski, E. Naunyn-Schmiedebergs Archs Pharmak. 299, 123–141 (1977).

    Article  CAS  Google Scholar 

  10. Dismukes, K., De Boer, A. A. & Mulder, A. H. Naunyn-Schmiedebergs Archs Pharmak. 299, 115–122 (1977).

    Article  CAS  Google Scholar 

  11. Westfall, T. C., Besson, M. J., Giorguieff, M. F. & Glowinski, J. Naunyn-Schmiedebergs Archs Pharmak. 292, 279–287 (1976).

    Article  CAS  Google Scholar 

  12. Plotsky, P. M., Wightman, R. M., Chey, W. & Adams, R. N. Science 197, 904–906 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Dismukes, K. & Mulder, A. H. Naunyn-Schmiedebergs Archs Pharmak. 297, 23–29 (1977).

    Article  CAS  Google Scholar 

  14. Raiteri, M. et al. in Dopamine (eds Roberts, P. J., Woodruff, G. N. & Iversen, L. L.) (Raven, New York, 1978).

    Google Scholar 

  15. Arbilla, S. & Langer, S. Z. Nature 271, 559–561 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Besson, M. J., Cheramy, A., Feltz, P. & Glowinski, J. Brain Res. 32, 407–424 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. Raiteri, M., Angelini, F. & Levi, G. Eur. J. Pharmac. 25, 411–414 (1974).

    Article  CAS  Google Scholar 

  18. Raiteri, M., del Carmine, R., Bertollini, A. & Levi, G. Eur. J. Pharmac. 41, 133–143 (1977).

    Article  CAS  Google Scholar 

  19. Gray, E. G. & Whittaker, V. P. J. Anat. 96, 79–87 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hunt, P., Kannengiesser, M. H. & Raynaud, J. P. J. Pharm. Pharmac. 26, 370–371 (1974).

    Article  CAS  Google Scholar 

  21. Seeman, P. & Lee, T. Science 188, 1217–1219 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Iversen, L. L., Rogawski, M. A. & Miller, R. J. molec. Pharmac. 12, 251–262 (1976).

    CAS  Google Scholar 

  23. Christiansen, J. & Squires, R. F. J. Pharm. Pharmac. 26, 367–369 (1974).

    Article  CAS  Google Scholar 

  24. Smith, J. E., Lane, J. D., Shea, P. A., McBride, W. J. & Aprison, M. H. Analyt. Biochem. 64, 149–169 (1975).

    Article  CAS  PubMed  Google Scholar 

  25. Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T. & Atack, C. J. Pharm. Pharmac. 24, 744–747 (1972).

    Article  CAS  Google Scholar 

  26. Roth, R. H., Walters, J. R. & Aghajanian, G. K. in Frontiers in Catecholamine Research (eds Snyder, S. H. & Costa, E.) 567–574 (Pergamon, New York, 1973).

    Book  Google Scholar 

  27. Grabowska, M. & Andén, N. E. Naunyn-Schmiedebergs Archs Pharmak. 292, 53–58 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAITERI, M., CERVONI, A., DEL CARMINE, R. et al. Do presynaptic auto-receptors control dopamine release?. Nature 274, 706–708 (1978). https://doi.org/10.1038/274706a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274706a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing