Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Removal of whiskers in young rats causes functional changes in cerebral cortex

Abstract

SENSORY deprivation or deafferentation has been shown to result in a variety of changes within the mammalian central nervous system (CNS)1,2. Although the majority of the studies have been anatomical in nature, recordings from cells in the visual cortex have shown that functional modifications also occur as a consequence of a deprived or abnormal visual experience in early life3–6. Moreover, alterations in neural responses are found in the somatosensory system7–9 following removal of input from the hind leg. We report here functional changes in the rat cortex resulting from early destruction of the whiskers. The region of the rat cortex receiving the sensory input from the whiskers contains aggregations of cells known as barrels and these aggregations do not develop if the corresponding whiskers are destroyed soon after birth10–13. We have found that such whisker removal also causes the associated cortical cells to become functionally reconnected with regions of the face surrounding the whiskers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Globus, A. in The Developmental Neuropsychology of Sensory Deprivation (ed. Riesen, A. N.) 9–91 (Academic, New York, 1975).

    Google Scholar 

  2. Smith, D. E. Prog. Neurobiol 8, 349–367 (1977).

    Article  CAS  Google Scholar 

  3. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 26, 1004–1017 (1963).

    Google Scholar 

  4. Hirsch, H. V. B. & Spinelli, D. N. Science 168, 869–871 (1970).

    Article  ADS  CAS  Google Scholar 

  5. Blakemore, C. & Cooper, G. F. Nature 228, 477–478 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Barlow, H. B. Nature 258, 199–204 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Basbaum, A. I. & Wall, P. D. Brain Res. 116, 181–204 (1976).

    Article  CAS  Google Scholar 

  8. Dostrovsky, J. O., Millar, J. & Wall, P. D. Expl. Neurol. 52, 480–495 (1976).

    Article  CAS  Google Scholar 

  9. Wall, P. D. & Egger, D. Nature 232, 542–545 (1971).

    Article  ADS  CAS  Google Scholar 

  10. Woolsey, T. A. & Van der Loos, H. Brain Res. 17, 205–242 (1970).

    Article  CAS  Google Scholar 

  11. Welker, C. Brain Res. 26, 259–275 (1971).

    CAS  PubMed  Google Scholar 

  12. Van der Loos, H. & Woolsey, T. A. Science 179, 395–398 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Van der Loos, H. Phil. Trans. R. Soc. Lond. 278, 373–376 (1977).

    Article  CAS  Google Scholar 

  14. Armstrong, J. M. J. Physiol., Lond. 246, 501–538 (1975).

    Article  Google Scholar 

  15. Axelrad, H., Verley, R. & Farkas, E. Neurosci. Lett. 3, 265–274 (1976).

    Article  CAS  Google Scholar 

  16. Cragg, B. G. & Waite, P. M. E. Proc. Austr. Physiol. pharmac. Soc. 7, 128P (1976).

    Google Scholar 

  17. Wall, P. D. Phil. Trans. R. Soc. Lond. 278, 361–372 (1977).

    Article  CAS  Google Scholar 

  18. Berman, N. & Sterling, P. J. Physiol., Lond. 255, 263–273 (1976).

    Article  CAS  Google Scholar 

  19. Goodman, D. C. & Horel, J. A. J. comp. Neurol. 127, 71–88 (1966).

    Article  CAS  Google Scholar 

  20. Guillery, R. W. J. comp. Neurol. 146, 407–419 (1972).

    Article  CAS  Google Scholar 

  21. Raisman, G. & Field, P. M. Brain Res. 50, 241–264 (1973).

    Article  CAS  Google Scholar 

  22. Steward, O., Cotman, C. W. & Lynch, G. S. Expl Brain Res. 20, 45–66 (1974).

    Article  CAS  Google Scholar 

  23. Diamond, J., Cooper, E., Turner, C. & Macintyre, L. Science 193, 371–377 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Kalil, R. Anat. Rec. 175, 353 (1973).

    Google Scholar 

  25. Durham, D. & Woolsey, T. A. Brain Res. 137, 169–174 (1977).

    Article  CAS  Google Scholar 

  26. Westrum, L. E. & Black, R. G. Brain Res. 25, 265–287 (1971).

    Article  CAS  Google Scholar 

  27. Lund, R. D., Cunningham, T. J. & Lund, J. S. Brain Behaviour Evolution 8, 51–72 (1973).

    Article  CAS  Google Scholar 

  28. Lieberman, A. R. in Essays on the Nervous System (eds Bellairs, R. & Gray, E. G.) 71–105 (Clarendon, Oxford, 1974).

    Google Scholar 

  29. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 206, 419–436 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WAITE, P., TAYLOR, P. Removal of whiskers in young rats causes functional changes in cerebral cortex. Nature 274, 600–602 (1978). https://doi.org/10.1038/274600a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274600a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing