Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The units of calcium conduction in Helix neurones

An Erratum to this article was published on 28 September 1978

Abstract

VOLTAGE-DEPENDENT membrane calcium currents, ICa, occur in muscle1,2, axons3,4 and nerve cell bodies5–9 but are not well characterised because of difficulties in separating them from other ionic currents, and inadequate spatial and temporal control of the clamp voltages used to examine them. As a result, information on the conduction process underlying ICa is limited. Recently two new techniques have been reported6,9,10 which overcome most of the problems associated with experimental investigations of ICa. We have used the suction pipette technique9,10, which combines methods of internal perfusion and voltage clamp, to study ICa in isolated nerve cell bodies of the snail, Helix aspersa. The time course of ICa in response to step changes in membrane potential was readily examined and, in addition, very small fluctuations (noise) in current were also observed. Assuming that the fluctuations represent current contributions from a population of independent two-state (conducting/nonconducting) unit conductances, 〈ICa〉, the average value of the fluctuations in the steady state, and σ2, the variance of the fluctuations can be used to estimate a single unit conductance, γca. Analysis of spontaneous current noise has been used previously to obtain γ values for the Na and K systems in several axon membranes11–14, and γ values for acetylcholine-sensitive conductances at the neuromuscular junction15,16 and in molluscan neurones17, but γCa is unknown. Unit ion conductances of a few picosiemens or greater have been reported and where comparisons can be made, these values are similar to those estimated using quite different techniques such as tetrodotoxin binding18–21. We found γCa to be less than 1 pS however, and we suggest that the low value results from the effect of a Ca2+ binding site in the conductance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fatt, P. & Katz, B. J. Physiol., Lond. 120, 171–186 (1953).

    Article  CAS  Google Scholar 

  2. Hagiwara, S. & Naka, K.-I. J. gen. Physiol. 48, 141–162 (1964).

    Article  CAS  Google Scholar 

  3. Baker, P. F., Hodgkin, A. L. & Ridgway, E. B. J. Physiol., Lond. 218, 709–755 (1971).

    Article  CAS  Google Scholar 

  4. Llinás, R., Blinks, J. R. & Nicholson, C. Science 176, 1127–1129 (1972).

    Article  ADS  Google Scholar 

  5. Geduldig, D. & Gruener, R. J. Physiol., Lond. 211, 217–244 (1970).

    Article  CAS  Google Scholar 

  6. Kostyuk, P. G., Krishtal, O. A. & Pidoplichko, V. I. Nature 267, 70–72 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Standen, N. B. J. Physiol., Lond. 249, 253–268 (1975).

    Article  CAS  Google Scholar 

  8. Eckert, R. & Lux, H. D. J. Physiol., Lond. 254, 129–151 (1976).

    Article  CAS  Google Scholar 

  9. Lee, K. S., Akaike, N. & Brown, A. M. Nature 265, 751–753 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Lee, K. S., Akaike, N. & Brown, A. M. J. gen. Physiol. 71, 489–508 (1978).

    Article  CAS  Google Scholar 

  11. Conti, F., DeFelice, L. J. & Wanke, E. J. Physiol., Lond. 248, 45–82 (1975).

    Article  CAS  Google Scholar 

  12. Conti, F., Hille, B., Neumcke, B., Nonner, W. & Stämpfli, R. J. Physiol., Lond. 262, 699–727 (1976).

    Article  CAS  Google Scholar 

  13. Fishman, H. M., Moore, L. E. & Poussart, D. J. M. Ann. N. Y. Acad. Sci. 303, 399–423 (1977).

    CAS  PubMed  Google Scholar 

  14. Begenisich, T. & Stevens, C. F. Biophys. J. 15, 843–846 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Katz, B. & Miledi, R. J. Physiol., Lond. 230, 707–717 (1973).

    Article  CAS  Google Scholar 

  16. Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–692 (1973).

    Article  CAS  Google Scholar 

  17. Marty, A., Neild, T. & Ascher, P. Nature 261, 501–504 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Hille, B. Prog. Biophys. molec. Biol. 21, 1–32 (1970).

    Article  CAS  Google Scholar 

  19. Armstrong, C. Biophys. J. 15, 932–933 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Neher, E. & Stevens, C. F. A. Rev. Biophys. Bioengng 6, 345–382 (1977).

    Article  CAS  Google Scholar 

  21. Neher, E. & Sakmann, B. Nature 260, 779–802 (1976).

    Article  Google Scholar 

  22. Fishman, H. M., Poussart, D. J. M. & Moore, L. E. J. Membrane Biol. 24, 281–304 (1975).

    Article  CAS  Google Scholar 

  23. Benington, P. R. Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

    Google Scholar 

  24. Akaike, N., Lee, K. S. & Brown, A. M. J. gen. Physiol. 71, 509–532 (1978).

    Article  CAS  Google Scholar 

  25. Neher, E. J. gen. Physiol. 58, 36–53 (1971).

    Article  CAS  Google Scholar 

  26. Connors, J. A. & Stevens, C. F. J. Physiol., Lond. 213, 31–53 (1971).

    Article  Google Scholar 

  27. Kostyuk, P. G., Krishtal, O. A. & Shakhovalov, Y. A. J. Physiol., Lond. 270, 545–568 (1977).

    Article  CAS  Google Scholar 

  28. Llinás, R. in Society for Neuroscience Symposia 2, (eds Cowan, M. & Ferendelli, J.) 139–160 (1977).

    Google Scholar 

  29. Armstrong, C. M. J. gen. Physiol. 50, 491–503 (1966).

    Article  CAS  Google Scholar 

  30. Keynes, R. D., Ritchie, J. M. & Rojas, E. J. Physiol., Lond. 213, 235–254 (1971).

    Article  CAS  Google Scholar 

  31. Hagiwara, S. in Membranes 3, (ed. Eisenman, G.) 359–381 (Marcel Dekker, New York, 1975).

    Google Scholar 

  32. Szabo, G. Ann. N. Y. Acad. Sci. 303, 266–280 (1977).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

AKAIKE, N., FISHMAN, H., LEE, K. et al. The units of calcium conduction in Helix neurones. Nature 274, 379–382 (1978). https://doi.org/10.1038/274379a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274379a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing