Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quark stars with ‘realistic’ equations of state

Abstract

THE possibility of a phase transition between nuclear matter and quark matter has been discussed in recent work1–13. Free quarks would presumably appear above a critical density pq, which is greater than the typical density ρn 2.5 × 1014g cm−3 within ordinary atomic nuclei. Such a transition might allow stable collapsed stars to exist wherein much of the matter is in the form of quark matter (quark stars). The maximum masses of collapsed stars have been investigated for the extreme case of ρq ρn and hard equations of state for quark matter5. However, it has been argued6,8,9 that some equations of state for quark matter require ρq >> ρn and are therefore unlikely to permit the existence of stable quark stars. We investigate here the properties of collapsed stars in the context of another class of quark-matter models that has recently been proposed11–13. These models12, which are consistent with all experimental nuclear and high-energy physics data, are based on a quantum chromodynamic treatment of quarks that are assumed to be of low mass (100 MeV for the lightest quarks). We find that stable quark stars are possible (compare with refs 6, 8, 9). However, we also conclude (compare with refs 5, 14) that such stars need not have significantly different macroscopic properties from those of neutron-star models15–17 based on conventional nuclear-matter equations of state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Itoh, N. Prog. theor. Phys. 44, 291 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Carruthers, P. Collective Phenomena 1, 147 (1973).

    Google Scholar 

  3. Iachello, F., Langer, W. D. & Lande, A. Nucl. Phys. A 219, 612 (1974).

    Article  CAS  Google Scholar 

  4. Collins, J. C. & Perry, M. J. Phys. Rev. Lett. 34, 1353 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Brecher, K. & Caporaso, G. Nature 259, 377 (1976).

    Article  ADS  Google Scholar 

  6. Baym, G. & Chin, S. Phys. Lett. 62 B, 241 (1976).

    Article  Google Scholar 

  7. Keister, B. D. & Kisslinger, L. S. Phys. Lett. 64 B, 117 (1976).

    Article  Google Scholar 

  8. Chapline, G. & Nauenberg, M. Nature 264, 235 (1976); University of California at Santa Cruz preprint No. 76/114.

    Article  ADS  CAS  Google Scholar 

  9. Bowers, R. L., Gleeson, A. M. & Pedigo, R. D. Astrophys. J. 213, 840 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Kislinger, M. B. & Morley, P. D. Phys. Lett. 67 B, 371 (1977); Astrophys. J. (submitted).

    Article  Google Scholar 

  11. Freedman, B. & McLerran, L. Phys. Rev. D 16, 1130 (1977); 1147 (1977); 1169 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Freedman, B. & McLerran, L. Phys. Rev. D 17, 1109 (1978).

    ADS  CAS  Google Scholar 

  13. Baluni, V. Phys. Lett. 72 B, 381 (1978); Phys. Rev. D17, 2092 (1978).

    Article  Google Scholar 

  14. Brecher, K. Astrophys. J. Lett. 215, L17 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Malone, R. C., Johnson, M. B. & Bethe, H. A. Astrophys. J. 199, 741 (1975).

    Article  ADS  Google Scholar 

  16. Pandharipande, V. R., Pines, D. & Smith, R. A. Astrophys. J. 208, 550 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Arnett, W. D. & Bowers, R. L. Astrophys. J. Suppl. 33, 415 (1977).

    Article  ADS  CAS  Google Scholar 

  18. De Grand, T., Jaffe, R. L., Johnson, K. & Kiskis, J. Phys. Rev. D 12, 2060 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Pandharipande, V. R. Nucl. Phys. A 178, 123 (1971).

    Article  CAS  Google Scholar 

  20. Reid, R. V. Ann. Phys. 50, 411 (1968).

    Article  ADS  Google Scholar 

  21. Pandharipande, V. R. & Smith, R. A. Nucl. Phys. A 237, 507 (1975).

    Article  Google Scholar 

  22. Oppenheimer, J. R. & Volkoff, G. Phys. Rev. 55, 374 (1939).

    Article  ADS  CAS  Google Scholar 

  23. Hegyi, D. J., Lee, T.-S. M. & Cohen, J. M. Astrophys. J. 201, 462 (1975).

    Article  ADS  Google Scholar 

  24. Anderson, P. W. & Palmer, R. G. Nature phys. Sci. 231, 145 (1971).

    Article  ADS  CAS  Google Scholar 

  25. Clark, J. W. & Chao, N.-C. Nature phys. Sci. 236, 37 (1972).

    Article  ADS  CAS  Google Scholar 

  26. Canuto, V. & Chitre, S. M. Phys. Rev. Lett. 30, 999 (1973).

    Article  ADS  CAS  Google Scholar 

  27. Reichley, P. E. & Downs, G. S. Nature 222, 279 (1969); Nature phys. Sci. 234, 48 (1971).

    Article  Google Scholar 

  28. Pines, D., Shaham, J. & Ruderman, M. Nature phys. Sci. 237, 83 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FECHNER, W., JOSS, P. Quark stars with ‘realistic’ equations of state. Nature 274, 347–349 (1978). https://doi.org/10.1038/274347a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274347a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing