Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lack of transformation of murine thymocytes by thymic epithelium

Abstract

THE normal thymus consists of two basic components: a reticular–epithelial component derived from the third and fourth bronchial pouches1 and a lymphoid component from stem cells which migrate into the embryonal thymus from fetal liver2 and later from bone marrow3. Two types of thymic reticular cells have been observed by electron microscopy: epithelial reticular cells and mesenchymal reticular cells or macrophages. The villous epithelial cells of the cortex and the cystic epithelial cells of the medulla were shown to be important for T cell differentiation4. Cultures of thymus epithelial cells were shown to induce the differentiation of precursor cells into certain mature T lymphocytes5,6. Recent studies have suggested that thymic epithelium cells (derived from leukaemic thymus) were capable of providing the leukaemogenic signal and thereby inducing in vitro leukaemia transformation of normal thymocytes. Thus, it was claimed that young AKR thymocytes cultured on thymus epithelium monolayers from aged AKR mice could induce leukaemia when injected into normal young recipients7. Similarly, monolayers of thymus epithelium cells, derived from radiation leukaemia virus-induced thymomas in C57BL/6 mice could bring about transformation of normal C57BL/6 thymocytes, thereby demonstrating in vitro leukaemogenesis8. Our aim here was to study further the possible role of the thymic epithelial reticulum (TER) in leukaemogenesis and we present evidence that the leukaemic cells are not derived from the thymus lymphocytes, nor from a ‘transformation capacity’ of the epithelial cells themselves, but that they are already present within phagocytic TER cells. We used the thymic epithelium monolayer–thymocyte co-cultivation method7,8 and the transplantation bioassay genotype analysis method9 (used to demonstrate the origin of the developing leukaemias following injection of thymocytes or thymic epithelium cells into appropriate recipients).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Metcalf, D. Recent Results in Cancer Research Vol. 5 (Springer, Heidelberg, 1966).

    Google Scholar 

  2. Owen, J. J. T. & Raff, M. C. J. exp. Med. 132, 1216–1232 (1970).

    Article  CAS  Google Scholar 

  3. Ford, C. E. & Micklem, H. S. Lancet i, 359 (1963).

    Article  Google Scholar 

  4. Mandel, T., Russel, P. J. & Byrd, W. in Proc. 3rd Lepetit Colloquium (ed. Silvestri, L. G.) 183–191 (North-Holland, Amsterdam, 1972).

    Google Scholar 

  5. Waksal, S. D., Cohen, I. R., Waksal, H. W. & St. Pierre, R. L. Fedn Proc. 33, 736 (1974).

    Google Scholar 

  6. Sato, V. L., Waksal, S. D. & Herzenberg, L. A. Cell. Immun. 24, 173–185 (1976).

    Article  CAS  Google Scholar 

  7. Waksal, S. D., Smolinsky, S., Cohen, I. R. & Feldman, M. Nature 263, 512–514 (1976).

    Article  CAS  Google Scholar 

  8. Haas, M., Sher, T. & Smolinsky, S. Cancer Res. 37, 1800–1807 (1977).

    CAS  PubMed  Google Scholar 

  9. Haran-Ghera, N. in Biology of Radiation Carcinogenesis (eds Yuhas, J. M., Tennant, R. W. & Regan, J. P.) 245 (Raven, New York, 1976).

    Google Scholar 

  10. Haran-Ghera, N. Int. J. Cancer 1, 81–87 (1966).

    Article  CAS  Google Scholar 

  11. Haran-Ghera, N., Ben-Yaakov, M. & Peled, A. J. Immun. 116, 600–606 (1977).

    Google Scholar 

  12. Wekerle, H., Cohen, I. R. & Feldman, M. Eur. J. Immun. 3, 745–748 (1973).

    Article  CAS  Google Scholar 

  13. Trowell, O. S. Int. J. Radiat. Biol. 4, 163–173 (1961).

    CAS  Google Scholar 

  14. Haran-Ghera, N. Leuk. Res. (in the press).

  15. Decleve, A., Sato, C., Lieberman, M. & Kaplan, H. S. Proc. natn. Acad. Sci. U.S.A. 71, 3124–3128 (1974).

    Article  CAS  Google Scholar 

  16. Haas, M. J. natn. Cancer Inst. 58, 251–257 (1977).

    Article  CAS  Google Scholar 

  17. Haran-Ghera, N. & Peled, A. Br. J. Cancer 19, 730–749 (1967).

    Article  Google Scholar 

  18. Ihle, J. N., Joseph, D. R. & Pazmino, N. H. J. exp. Med. 144, 1406–1423 (1976).

    Article  CAS  Google Scholar 

  19. Ginsburg, H. & Sachs, L. J. natn. Cancer Inst. 27, 1153–1171 (1961).

    CAS  Google Scholar 

  20. Clark, S. L. Am. J. Anat. 112, 1–33 (1963).

    Article  Google Scholar 

  21. Metcalf, D., Ishidata, M. & Brumby, M. J. natn. Cancer Inst. 38, 527–539 (1967).

    CAS  Google Scholar 

  22. Feldman, D. G. & Gross, L. Cancer Res. 26, 412–426 (1966).

    CAS  PubMed  Google Scholar 

  23. Izard, J. & de Harven, E. Cancer Res. 28, 421–433 (1968).

    CAS  PubMed  Google Scholar 

  24. Ioachim, H. & Furth, J. J. natn. Cancer Inst. 32, 339–359 (1964).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PELED, A., HARAN-GHERA, N. Lack of transformation of murine thymocytes by thymic epithelium. Nature 274, 266–269 (1978). https://doi.org/10.1038/274266a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274266a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing